Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по мониторам

Стр. 2 из 31      1<< 1 2 3 4 5>> 31

Масштабируемые графические ядра GT1, GT2, GT3, GT3е, GT4, GT4e.

Статья добавлена: 01.03.2022 Категория: Статьи по мониторам

Масштабируемые графические ядра GT1, GT2, GT3, GT3е, GT4, GT4e. Одним из основных нововведений в микроархитектуре процессоров Haswell считается новое графическое ядро c поддержкой DirectX 11.1, OpenCL 1.2 и OpenGL 4.0. Графическое ядро в микроархитектуре Haswell масштабируемое. Варианты графических ядер имели кодовые названия GT3, GT2 и GT1. Ядро GT1 имело минимальную производительность, а GT3 — максимальную. В графическом ядре GT3 появился второй вычислительный блок, за счет чего удвоилось количество блоков растеризации, пиксельных конвейеров, вычислительных ядер и сэмплеров. Ядро GT3 было вдвое производительнее ядра GT2. Ядро GT3 содержит 40 исполнительных блоков, 160 вычислительных ядер и четыре текстурных блока (в графическом ядре Intel HD Graphics 4000 процессоров Ivy Bridge содержалось всего 16 исполнительных устройств, 64 вычислительных ядра и два текстурных блока). Поэтому, несмотря на приблизительно одинаковые тактовые частоты их работы, графическое ядро Intel GT3 значительно превосходило своего предшественника по уровню производительности. Кроме того, ядро GT3 (в варианте GT3e) имело еще более высокую производительность благодаря интеграции памяти EDRAM в упаковку процессора GT3e. Ядро GT2 содержало 20 исполнительных блоков, 80 вычислительных ядер и два текстурных модуля, а ядро GT1 — только 10 исполнительных блоков, 40 вычислительных ядер и один текстурный модуль. Сами исполнительные блоки имеют по четыре вычислительных ядра наподобие тех, что используются в архитектуре AMD VLIW4. При работе с памятью применили технологию Instant Access, которая позволяет вычислительным ядрам процессора и графическому ядру напрямую обращаться к оперативной памяти. Графическое ядро GT4, GT4e (Iris Pro Graphics 580) появилось в процессорах Broadwell и Skylake. Графическое ядро GT4e содержало уже: 72 исполнительных устройства, 128 Мбайт eDRAM, производительность до 1152 ГФлопс на частоте 1 ГГц. Вычислительная производительность Iris Pro Graphics 580 составляет более 1,1 Тфлопс (триллиона операций с плавающей точкой в секунду) в зависимости от тактовой частоты. Графический процессор Iris Pro Graphics 580 имеет обновлённый мультимедийный движок, который поддерживает аппаратное декодирование и кодирование Ultra HD-видео с использованием кодеков HEVC и VP9. Современные графические ядра, применяемые в процессорах Broadwell и Skylake и относящиеся к классам Iris и Iris Pro предлагают вполне достаточную для массовых игровых систем производительность. Конечно, здесь имеется в первую очередь способность интеловской интегрированной графики нормально работать в казуальных и несложных в графическом плане сетевых играх. За последние пять лет производительность интегрированной графики выросла в 30 раз. Новые интеловские графические ядра уже были способны предложить весьма впечатляющую теоретическую производительность. GPU, реализованный в Skylake, как и его предшественники, тоже сохранил традиционный модульный дизайн. Таким образом, мы вновь имеем дело с целым семейством решений разного класса: на базе имеющихся строительных блоков нового поколения Intel может собирать кардинально различающиеся по уровню производительности GPU. Подобная масштабируемость сама по себе новинкой не является, но в Skylake возросла не только максимальная производительность, но и число доступных вариантов графического ядра.

Технология Mobile High Definition Link (MHL).

Статья добавлена: 24.02.2022 Категория: Статьи по мониторам

Технология Mobile High Definition Link (MHL). Технология Mobile High Definition Link (MHL) мобильного аудио-видео интерфейса объединяет в себе функциональность интерфейсов HDMI и MicroUSB, и служит для непосредственного подключения мобильных устройств к телевизорам и мониторам, поддерживающим высокое разрешение Full HD. При наличии MHL мобильный телефон или планшет в состоянии передавать видео 1080р при 60 кадрах в секунду, а также 7.1-канальный цифровой звук. Покупая такой современный смартфон или планшет, можно быть уверенным в том, что он в состоянии обеспечить воспроизведение видео высокого разрешения в оптимальном качестве. Если же мобильное устройство имеет MicroHDMI, то можно и не задумываться о подобном функционале, но есть у варианта с трансляцией сигнала по HDMI один заметный минус: мобильное устройство, будь то планшет или смартфон, очень быстро разряжается под такой серьезной нагрузкой, как воспроизведение видео высокого разрешения. Для подключения MHL могут использоваться два вида кабелей: пассивный и активный....

Интерфейс Thunderbolt.

Статья добавлена: 27.01.2022 Категория: Статьи по мониторам

Интерфейс Thunderbolt. Интерфейс Thunderbolt был разработан компанией Intel в сотрудничестве с Apple. Торговая марка Thunderbolt была зарегистрирована Apple, но позже была передана компании Intel. Полные права принадлежат Intel. Первым устройством, где был применён данный интерфейс, стал ноутбук MacBook Pro компании Apple, который был анонсирован еще в феврале 2011 года. Thunderbolt изначально разрабатывался для объединения мобильных устройств, ноутбука и настольного компьютера с использованием меньшего числа кабелей. В стандарте был предложен универсальный разъём для дисплеев и внешних устройств хранения. Передаваемая по Thunderbolt 1 и 2 мощность электропитания составляет 10 Ватт - это больше, чем 4,5-5 Ватт в стандартном USB 3.0. Интерфейс Thunderbolt объединяет протоколы PCI Express (PCIe) и DisplayPort (DP) в один последовательный сигнал и предоставляет постоянное напряжение по тому же кабелю. Контроллеры Thunderbolt мультиплексируют один или более каналов данных от подключённых к ним устройств PCIe или DisplayPort для передачи через один дуплексный канал Thunderbolt, затем демультиплексируют их для использования устройствами PCIe или DP на другом конце. Один порт Thunderbolt поддерживает до шести устройств Thunderbolt, подключаемых через концентраторы (хабы) или цепочкой (daisy chain). Несколько устройств могут использоваться в качестве мониторов, но их количество не может превышать количества источников сигнала DP. Монитор, использующий настоящий разъём MDP, может быть подключён к концу Thunderbolt-цепочки, так как Thunderbolt совместим с устройствами, поддерживающими DP 1.1a. При подключении DP-совместимого устройства к порту Thunderbolt предоставляется сигнал DP c 4 линиями (lane) и скоростью не более 5,4 Гбит/с на линию Thunderbolt. При соединении с устройством Thunderbolt скорость передачи данных по каждой линии составляет 10 Гбит/с, 4 линии Thunderbolt сконфигурированы как 2 полнодуплексных 10 Гбит/с канала, каждый состоит из линии на приём и линии на передачу. Интерфейс Thunderbolt может быть реализован на PCIe-видеокартах, у которых есть доступ к разъёму DP и подключению по шине PCIe, или на материнской плате новых компьютеров со встроенным видео, таких, как MacBook Air.

Варианты технологий SLI и CrossFire.

Статья добавлена: 26.01.2022 Категория: Статьи по мониторам

Варианты технологий SLI и CrossFire. NVIDIA представляет технологию SLI (Scan Line Interleave – чередование строчек), а специалисты ATI разработали технологию CrossFire (перекрестный огонь) в которой использовали подход, радикально отличающийся от подхода компании NVIDIA в SLI. Технология SLI NVIDIA представила технологию SLI (Scan Line Interleave – чередование строчек), благодаря которой появилась возможность объединить две подобные видеокарты с шиной PCI для формирования изображения методом чередования строк, что увеличивало быстродействие графической подсистемы и разрешение экрана. Действительно, всё новое – это хорошо (в данном случае – очень хорошо) забытое старое: спустя почти 15 лет NVIDIA возродила SLI. Графические адаптеры в SLI-конфигурации соединяются платой-перемычкой, надеваемой на специальные 26-контактные разъемы в верхней части платы. Именно название этой платы Scalable Link Interface (интерфейс масштабируемых соединений) и позволило компании NVIDIA сохранить хорошо знакомую пользователям аббревиатуру SLI. Чтобы построить тандем из видеокарт NVIDIA, необходима специальная материнская плата на базе чипсета от NVIDIA с двумя разъёмами PCI-E x16 и поддерживающая SLI. Для обмена данными между собой карты выше начального уровня соединяются специальным мостиком, а видеоадаптеры Low-End передают информацию по шине PCI Express. Технология CrossFire (перекрестный огонь) Инженеры ATI разработали технологию CrossFire в которой использовали подход, радикально отличающийся от подхода компании NVIDIA в SLI. У ATI в CrossFire обе платы равноправны, одна из них выполняет роль ведущей (master card), а другая - ведомой (slave card). Ведомой может быть только плата, оснащенная дополнительной микросхемой, называемой Compositing Engine, — эта микросхема комбинирует фрагменты изображения, обработанные каждой из плат. Для соединения плат используется не внутренняя перемычка, а специальный кабель, соединяющий выход ведомой карты со специальным разъемом ведущей. Технология CrossFire предусматривает несколько режимов распределения нагрузки. Особенностью режимов работы CrossFire является то, что для CrossFire доступно всего 3 режима рендеринга: Scissor, SuperTiling, AFR. В отличие от SLI-систем свободный выбор режимов недоступен и нужный режим выбирается драйвером автоматически. Так же, как и в NVIDIA SLI «перекрестный огонь» может вестись и в режиме покадрового рендеринга, и в режиме динамического распределения нагрузки при разделении экрана на две неравные сплошные части. Предусмотрен и фирменный режим Su-pertiling (мозаика), в котором изображение разбивается на фрагменты по 32x32 пиксела и эти фрагменты делятся поровну между платами, как делится на черные и белые клетки шахматная доска. Этот режим обеспечивает равномерность распределения нагрузки между платами.

Варианты построения видеопамяти: GDDR4, GDDR5, GDDR5X, GDDR6. Wide I/O, HMC, HBM.

Статья добавлена: 26.01.2022 Категория: Статьи по мониторам

Варианты построения видеопамяти: GDDR4, GDDR5, GDDR5X, GDDR6. Wide I/O, HMC, HBM. Видеопамять GDDR4 (англ. Graphics Double Data Rate) используется на частотах от 1 ГГц DDR (2 ГГц) и вплоть до 2,2-2,4 ГГц DDR (4-4,8 ГГц), что обеспечивает достаточно высокую пропускную способность, особенно в секторе графических решений. GDDR4 была ориентирована на рынок графических решений, ожидалось, что GDDR4 будет обладать гораздо большим энергопотреблением. Технология предоставляла непревзойденную мультимедийную поддержку для программных средств, которые могли помочь индивидуальным творцам реализовать плоды своего воображения. Технология GDDR4 позволяет осуществлять визуализацию цифровых материалов с кинематографическим качеством и создавать высокореалистичные игры, а также поддерживает мощные и эффективные инструментальные средства для творчества и повышения продуктивности работы. Память стандарта GDDR-5 – это видеопамять с увеличенной в два раза пропускной способностью, с новыми технологиями энергосбережения, а также алгоритмом выявления ошибок (память типа GDDR-5 в три раза быстрее микросхем GDDR-3, работающих на частоте 1600 МГц DDR). Память типа GDDR-5 использует две тактовые частоты для разных операций, что позволяет свести к минимуму задержки на операциях записи и чтения. Чипы памяти имеют плотность 512 Мбит, они способны передавать до 24 гигабайт данных в секунду, и работать на частотах свыше 3.0 ГГц DDR при напряжении 1.5 В (компания Qimonda - поставщик GDDR-5 для видеокарт AMD). Разговоры о возможности использования производителями видеокарт памяти типа GDDR-5 ходили уже давно, но практическая реализация этой идеи началась только летом 2008 года - видеокарты Radeon HD 4870 уже оснащались 1 Гб памяти типа GDDR-5. Компания Qimonda тогда объявила, что стала партнёром AMD по выпуску графических решений с памятью типа GDDR-5. Массовые поставки соответствующих микросхем начались всего через полгода после появления первых образцов. Таким образом, первые видеокарты Radeon HD 4870 были оснащены памятью типа GDDR-5 производства Qimonda. Вслед за настольным сектором память типа GDDR-5 прописалась и в ноутбуках, а затем и в игровых консолях. Для компании AMD поставлялись микросхемы плотностью 512 Мбит, способные работать на скорости 4.0 ГГц DDR, а память видеокарт Radeon HD 4870 работала на частоте 3870 МГц DDR. Идут поставки микросхем GDDR-5, способных работать и на частоте 5.0 ГГц DDR и 6.0 ГГц DDR. GDDR5X следует рассматривать как ускоренную по скорости производную от GDDR5, а не радикальный новый стандарт DRAM. Этот подход был выбран, чтобы позволить пользователям использовать свои предыдущие инвестиции в экосистему памяти GDDR5 и обеспечить быстрый и низкий риск перехода от GDDR5. Micron предлагает устройства GDDR5X SGRAM со скоростью передачи данных от 10 Гбит/с до 12 Гбит/с, и устройства с 14 Гбит/с. GDDR6 - 6-е поколение памяти DDR SDRAM, спроектированной для обработки графических данных и для приложений, требующих более высокой рабочей частоты. GDDR6 является графическим решением следующего поколения при разработке стандартов в JEDEC и может работать до двух раз быстрее, чем GDDR5, при этом её рабочее напряжение снижено на 10%. Также одной из отличительных особенностей новой памяти является работа каждой микросхемы в двухканальном режиме.

NVIDIA. Графическая архитектура Turing.

Статья добавлена: 24.12.2021 Категория: Статьи по мониторам

NVIDIA. Графическая архитектура Turing. Ставка в архитектуре сделана на трассировку лучей, машинное обучение, GDDR6 и другие новшества. Знаковой функцией для рынка ProViz, является так называемый гибридный рендеринг, сочетающий в себе методы трассировки лучей и традиционное растрирование. Результатом должна стать возможность добиваться в реальном времени качества графики, близкого к полноценной трассировке лучей. Наряду с блоками RT (ядра для трассировки лучей) и тензорными ядрами (для инференса), архитектура Turing приносит новый потоковый мультипроцессор (SM), который по аналогии с Volta добавляет целочисленный исполнительный блок параллельно к каналу данных с плавающей точкой, и новую унифицированную архитектуру кеша с удвоенной по сравнению с предыдущим поколением полосой пропускания. Преимуществом является ускорение создания адресов и производительность в задачах совмещённого умножения-сложения с однократным округлением (Fused Multiply Add, FMA), хотя наверняка новый инструмент будет использоваться во многих задачах. JEDEC и три его крупных участника в лице Samsung, SK Hynix и Micron позиционируют стандарт GDDR6 в качестве преемника GDDR5 и GDDR5X, и NVIDIA подтвердила, что чипы Turing будут его поддерживать. В зависимости от производителя, GDDR6 первого поколения, как правило, позволяет развивать до 16 Гбит/с на единицу полосы пропускания, что вдвое больше, чем у GDDR5 и на 40 %, чем у GDDR5X в картах NVIDIA (ускорители Quadro будут использовать модули Samsung на 14 Гбит/с). NVLink будет присутствовать, по крайней мере, в некоторых продуктах, — в частности, NVIDIA использует её для всех трёх своих новых карт Quadro RTX. Эти продукты предлагают двойные соединения с общей пропускной способностью до 100 Гбайт/с. (NVLink — высокопроизводительная компьютерная шина, использующая соединение точка-точка, дифференциальные сигналы со встроенным синхросигналом и каналы, называемые «блоки», в каждом по 8 пар со скоростью 20 Гбит/с. Каждый блок предоставляет возможность передачи примерно 20 гигабайт в секунду). NVLink позволяет GPU и CPU обмениваться данными в 5—12 раз быстрее, чем это возможно в современных реализациях шины PCI Express 3.0 x16 (15,75 Гбайт/с). Присутствие NVLink не означает, что интерфейс будет использоваться в потребительских ускорителях для SLI-конфигураций.

Варианты контроллеров видеостен.

Статья добавлена: 23.12.2021 Категория: Статьи по мониторам

Варианты контроллеров видеостен. Контроллер видеостены - это компьютер обрабатывающий видеосигнал специальным образом, для синхронного отображения на панелях видеостены. Помимо этого он поддерживает множество сценариев отображения окон и раскладок экранов. Согласовывает параметры входящих видеосигналов для корректного отображения на видеостене. Контроллеры видеостены подразделяются на: - встраиваемые микропроцессоры; - модульные видеопроцессоры для работы непосредственно со стеной; - контроллеры управления видеостеной, интегрированной с другими инженерными системами. Наиболее сложные контроллеры используются с средствами охранного видеонаблюдения и контроля и поддерживают широкую группу специализированных устройств, выводят полученную информацию на видеостену или в многооконном режиме. Для непосредственного управления видеостеной применяются модульные видеоконтроллеры. Обычно это небольшие, компактных габаритов устройства для управления выводом изображений, уже обработанных другими электронными средствами или непосредственно с нескольких камер видеонаблюдения. Такие устройства обеспечивают функции оперативного управления поступающими графическими и видеосигналами, их синхронизацию или распределение демонстрации на видеостене. Контроллеры для видеостен могут быть программными и аппаратными. Программный контроллер представляет собой промышленный компьютер под управлением ОС Windows или Linux. Преимуществом программных контроллеров является возможность вывода широкоформатных материалов в разрешении, совпадающим c разрешением видеостены. Помимо этого, данные для визуализации на программном контроллере могут поступать от других источников информации как через аналоговые входные порты, так и через цифровые. Внешние источники отображаются в индивидуальных окнах, которые могут свободно масштабироваться и свободно позиционироваться в пределах полиэкрана видеостены. В аппаратных контроллерах изображение формируется с помощью набора специализированных микропроцессоров.

Дисплеи на OLED (Organic Light Emitting Diode).

Статья добавлена: 23.11.2021 Категория: Статьи по мониторам

Дисплеи на OLED (Organic Light Emitting Diode). OLED или Organic Light Emitting Diode (органический светодиод) – одна из самых перспективных разработок, применение которой найдётся везде: просто для освещения, для создания собственно дисплеев или, например, подсветки LCD-панелей. LED-элементы потребляют очень мало электроэнергии. LED-дисплеями уже сейчас оснащаются многие мобильные телефоны, карманные медиаплееры, ноутбуки/нетбуки, выпускаются и OLED-телевизоры. Преимуществ у OLED-технологии много. Любой OLED-дисплей обеспечивает невероятные контрастность и яркость при меньших, чем у LCD или «плазмы» энергозатратах (данным производителей, обеспечивается контрастность 1000000:1 и выше. OLED-дисплей намного тоньше любого, даже самого современного LCD (толщина OLED составляет считанные миллиметры). Это позволяет создавать тончайшие панели, особое значение данная характеристика имеет для мобильных телефонов и других гаджетов, для которых компактность – первое требование. Даже в том случае, когда OLED играет вспомогательную роль и используется с LCD в качестве элемента подсветки, он положительно влияет на качество изображения. В отличие от обычных ламп, LED-панель обеспечивает абсолютно равномерную подсветку экрана на всей площади.

Информация о развитии cемейства процессоров GeForce 8800 (типичные представители).

Статья добавлена: 29.10.2021 Категория: Статьи по мониторам

Информация о развитии cемейства процессоров GeForce 8800 (типичные представители). В составе семейства GeForce 8800 были два процессора: GeForce 8800 GTX и урезанный вариант GeForce 8800 GTS (все видеокарты на основе этих графических процессоров, которые можно было встретить на рынке под логотипами разных компаний, на самом деле являлись референсными видеокартами NVIDIA и ничем кроме коробки и, возможно, комплектации не отличались друг от друга). Стоимость видеокарты на GPU NVIDIA GeForce 8800 GTX составляла 599 долл., а видеокарты на GPU NVIDIA GeForce 8800 GTS - 499 долл. Графические процессоры семейства GeForce 8800 были выполнены еще по 90-нанометровому техпроцессу. При этом топовая модель NVIDIA GeForce 8800 GTX имела 681 млн. транзисторов. Все процессоры семейства GeForce 8800 производились компанией TSMC. Разница между процессорами GeForce 8800 GTX и GeForce 8800 GTS заключается в числе унифицированных потоковых процессоров (SP), тактовой частоте работы SP и графического ядра, а также в разрядности шины памяти, частоте работы памяти и объеме поддерживаемой памяти. Так, GPU GeForce 8800 GTX имеет 128 унифицированных потоковых процессоров, а GeForce 8800 GTX - только 96. При этом тактовая частота SP в GeForce 8800 GTX составляет 1350 МГц, а в GeForce 8800 GTS - 1200 МГц. Тактовая частота остальных блоков (кэш, модули текстурирования и т.д.) процессора GeForce 8800 GTX равна 575 МГц, а процессора GeForce 8800 GTS - 500 МГц. Референсная видеокарта на базе процессора GeForce 8800 GTX имела 768 Мбайт видеопамяти GDDR3. При этом ширина шины памяти составляла 384 бит, а частота работы памяти - 1800 МГц. Соответственно пиковая пропускная способность шины памяти равна 86,4 Гбайт/с. Референсная видеокарта на базе процессора GeForce 8800 GTS имела 640 Мбайт видеопамяти GDDR3. При этом ширина шины памяти составляла 320 бит, а частота работы памяти - 1600 МГц. Соответственно, пиковая пропускная способность шины памяти была равна 64 Гбайт/с. Все остальные технические характеристики и функциональные возможности видеокарт на процессорах GeForce 8800 GTX и GeForce 8800 GTS совпадали. Графические процессоры семейства GeForce 8800 были самыми производительными игровыми графическими процессорами. Но далеко не все их потенциальные возможности можно было сразу реализовать. Так, эти процессоры поддерживали спецификацию API DirectX 10, которая тогда еще официально не была объявлена. Кроме того, не было и игр, совместимых с DirectX 10. Ну а поскольку раскрыть все потенциальные возможности видеокарт на базе процессоров семейства GeForce 8800 можно было только при использовании приложений DirectX 10, то понятно, что эти карты были ориентированы на будущее. В то же время ориентация графических карт на базе процессоров нового поколения на приложения DirectX 10 вовсе не означает, что они не были совместимы с приложениями DirectX 9 и вообще с любыми играми. Видеокарта на графическом процессоре GeForce 8800 GTX позволяла в то время получить рекордный уровень производительности, недоступный для видеокарт на базе процессоров ATI и для видеокарт на базе процессоров NVIDIA предыдущего поколения. Анонс новых игровых решений был осуществлен в августе 2018 г. в Кельне на игровой выставке Gamescom 2018. Nvidia назвала её новые игровые видеокарты, и новые профессиональные ускорители Quadro. Всего было анонсировано три модели: Quadro RTX 5000, Quadro RTX 6000 и Quadro RTX 8000. В данном сегменте Nvidia перешла к аббревиатуре RTX в обозначении своих устройств. Все новинки основаны на архитектуре Turing. Известно, что площадь новых GPU составляет 754 мм2, а количество транзисторов достигает 18,6 млрд. При этом у старшей из карт 4608 ядер CUDA. Напомним, GPU GV100 имеет площадь 815 мм2, содержит 21,1 млрд. транзисторов и включает 5376 ядер CUDA (CUDA – это архитектура параллельных вычислений от NVIDIA, позволяющая существенно увеличить вычислительную производительность благодаря использованию GPU - графических процессоров). Архитектура Turing (Nvidia) оснащена специальными процессорами для трассировки лучей – ядрами RT. Они ускоряют расчеты перемещения света и звука в 3D-средах до 10 миллиардов лучей в секунду. Turing позволяет осуществлять трассировку лучей в реальном времени в 25 раз быстрее по сравнению с предыдущим поколением GPU Pascal, а финальный рендеринг эффектов в фильмах на GPU в 30 раз быстрее, чем на CPU. По словам производителей, архитектура Turing стала самым большим прорывом со времен изобретения GPU CUDA.

Видеоадаптеры (ликбез).

Статья добавлена: 15.09.2021 Категория: Статьи по мониторам

Видеоадаптеры (ликбез). Видеоадаптер (а также видеокарта, графический адаптер, графическая плата, графическая карта, графический ускоритель) — это устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой. Однако эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения — качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты. В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором — графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач. Обычно видеокарта была выполнена в виде печатной платы (плата расширения) и вставлялась в разъём расширения, универсальный (PCI Express), а раньше в специализированный (AGP). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты — как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ (но в этом случае устройство, строго говоря, не может быть названо видеокартой).

Графические ядра GT1/GT2/GT3/GT4/еDRAM.

Статья добавлена: 10.09.2021 Категория: Статьи по мониторам

Графические ядра GT1/GT2/GT3/GT4/еDRAM. Одним из основных нововведений в микроархитектуре процессоров Haswell было новое графическое ядро c поддержкой DirectX 11.1, OpenCL 1.2 и OpenGL 4.0. Но самое главное, что графическое ядро в микроархитектуре Haswell стало масштабируемым. Появились варианты графического ядра с кодовыми названиями GT3, GT2 и GT1. Ядро GT1 имело минимальную производительность, а GT3 — максимальную. В графическом ядре GT3 появился второй вычислительный блок, за счет чего удвоилось количество блоков растеризации, пиксельных конвейеров, вычислительных ядер и сэмплеров и GT3 вдвое производительнее GT2. Ядро GT3 содержит 40 исполнительных блоков, 160 вычислительных ядер и четыре текстурных блока. Графическое ядро Intel GT3 превосходит своего предшественника (Intel HD Graphics 4000) по уровню производительности. Кроме того, ядро GT3 имеет более высокую производительность благодаря интеграции памяти EDRAM (в ядре GT3e) в упаковку процессора. Ядро GT2 содержит 20 исполнительных блоков, 80 вычислительных ядер и два текстурных модуля, а ядро GT1 — только 10 исполнительных блоков, 40 вычислительных ядер и один текстурный модуль. Сами исполнительные блоки имеют по четыре вычислительных ядра наподобие тех, что используются в архитектуре AMD VLIW4. Еще одно нововведение заключается в том, что при работе с памятью применяется технология Instant Access, которая позволяет вычислительным ядрам процессора и графическому ядру напрямую обращаться к оперативной памяти. В предыдущих версиях графического ядра вычислительные ядра процессора и графическое ядро тоже работали с общей оперативной памятью, но при этом память делилась на две области с динамически изменяемыми размерами. Одна из них отводилась для графического ядра, а другая — для вычислительных ядер процессора. Однако получить одновременный доступ к одному и тому же участку памяти графическое ядро и вычислительные ядра процессора не могли. И в случае, если графическому процессору требовались те же данные, что использовались вычислительным ядром процессора, ему приходилось копировать этот участок памяти. Это приводило к росту задержек, а кроме того, возникала проблема отслеживания когерентности данных. Технология InstantAccess позволяет драйверу графического ядра ставить указатель на положение определенного участка в области памяти графического ядра, к которой вычислительному ядру процессора необходимо напрямую получить доступ. При этом вычислительное ядро процессора будет работать с этой областью памяти напрямую, без создания копии, а после выполнения необходимых действий область памяти будет возвращена в распоряжение графического ядра. Семейство новых графических ядер GT1, GT2 и GT3 обладает улучшенными возможностями и по кодированию-декодированию видеоданных. Поддерживается аппаратное декодирование форматов H.264/MPEG-4 AVC, VC-1, MPEG-2, MPEG-2 HD, Motion JPEG, DivX с разрешением вплоть до 4096х2304 пикселов. Графическое ядро способно одновременно декодировать несколько видеопотоков 1080p и воспроизводить видео 2160p без подтормаживания и пропуска кадров. Появился и специальный блок улучшения качества видео, который называется Video Quality Engine и отвечает за шумоподавление, цветокоррекцию, деинтерлейсинг, адаптивное изменение контраста и т.д. Также новые графические ядра поддерживают функции стабилизации изображения, преобразования частоты кадров и расширенной гаммы. В процессорах Broadwell и Skylake появилось графическоеядро Iris Pro Graphics 580 (GT4e). Графическое ядро GT4e содержит: 72 исполнительных устройства, 128 (256) Мбайт eDRAM, производительность до 1152 ГФлопс на частоте 1 ГГц (a ядро GT3 содержит 40 исполнительных блоков). Новое графическое ядро GT4e, которое имеет 72 потоковых процессора, обеспечивает вычислительную производительность более 1,1 Тфлопс (триллиона операций с плавающей точкой в секунду) в зависимости от тактовой частоты. Графический процессор Iris Pro Graphics 580 имеет обновлённый мультимедийный движок, который поддерживает аппаратное декодирование и кодирование Ultra HD-видео с использованием кодеков HEVC и VP9.

Intel Iris Pro Graphics 580.

Статья добавлена: 08.07.2021 Категория: Статьи по мониторам

Intel Iris Pro Graphics 580. Наращивая мощность графического ядра, Intel проявила большую заботу и о том, чтобы для его нужд хватало пропускной способности памяти. Начиная с процессоров Skylake обновился контроллер памяти, и теперь он способен работать с DDR4 SDRAM, частота и пропускная способность которой заметно выше, чем у DDR3 SDRAM. А в GPU появилась новая технология Lossless Render Target Compression (направленное на рендеринг сжатие без потерь). Её суть заключается в том, что все данные, пересылаемые между GPU и системной памятью, которая одновременно является и видеопамятью, предварительно сжимаются, разгружая таким образом полосу пропускания. Применённый алгоритм использует компрессию без потерь, при этом степень сжатия данных может достигать двукратного размера. Всякая компрессия требует задействования дополнительных вычислительных ресурсов, но внедрение технологии Lossless Render Target Compression увеличивает быстродействие интегрированного GPU в реальных играх на величину от 3 до 11 процентов. В графике процессоров Skylake были сделаны существенные изменения в части поддерживаемых графических API. На данный момент в GPU новых процессоров есть совместимость с DirectX 12, OpenGL 4.4 и OpenCL 2.0, а позднее, по мере совершенствования графического драйвера, к этому списку добавятся и будущие версии OpenCL 2.x и OpenGL 5.x, а также поддержка низкоуровневого фреймворка Vulkan. Здесь уместно упомянуть и о том, что в новом GPU реализована полноценная когерентность памяти с процессором, что делает Skylake самым настоящим APU – его графическое и вычислительные ядра могут одновременно работать над одной и той же задачей, используя общие данные. Основные характеристики Intel Iris Pro Graphics 580:

Стр. 2 из 31      1<< 1 2 3 4 5>> 31

Лицензия