Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Управление OLED c активной матрицей (AMOLED).

Управление OLED c активной матрицей (AMOLED).

Существуют два вида OLED-дисплеев - PMOLED и AMOLED. Разница заключается в способе управления матрицей - это может быть либо пассивная матрица (PM) или активная матрица (AM). OLED (Organic Light-Emitting Diode – органический светоизлучающий диод) – это диод, изготовленный из органических соединений, который излучает свет при пропускании через него тока.

OLED представляет собой новую технологию для тонких, эффективных и ярких экранов или дисплеев. OLED является новой технологией, с помощью которой можно производить тонкие, гибкие и яркие дисплеи. OLED-дисплеи изготовляются из органических светоизлучающих материалов и поэтому OLED-дисплеи не требуют подсветки и поляризационных фильтрующих систем, которые используются в LCD-дисплеях. OLED-дисплеи в устройствах можно сделать гибкими и прозрачными.

В настоящий момент применяются три основных схемы реализации цветных OLED (рис. 1):

- схема с раздельными цветными эмиттерами;

- схема WOLED + CF (белые эмиттеры + цветные фильтры);

- схема с конверсией коротковолнового излучения.

 

Рис. 1. Варианты формирования структур цветных OLED

 

Самый первый и логичный вариант - с раздельными эмиттерами. Этот вариант и самый эффективный с позиции использования энергии. Однако он реализуется с определенными технологическими трудностями. Второй вариант проще в части создания белых эмиттеров, одинаковых для всех трех компонентов цвета, однако значительно проигрывает по эффективности использования энергии первому варианту. В третьем варианте (Color Changing Media - CCM) применяются голубые эмиттеры и люминесцентные материалы для преобразования коротковолнового голубого излучения в более длинноволновые - красный и зеленый. У каждого из вариантов есть свои «плюсы» и «минусы».

Одним из важных элементов схемы управления матрицей AMOLED являются ключевые элементы, коммутирующие ток через OLED-светодиод. Они должны обеспечивать достаточное быстродействие, пропускать большие токи (несколько мА), иметь малые токи уточки, а технология их формирования должна обеспечивать высокую однородность параметров по всей площади экрана (см. рис. 2).

 

Рис. 2. Типовая схема ячейки адресации AMOLED.

 

Технология их формирования должна быть простой, недорогой и обеспечивать стабильную воспроизводимость параметров транзисторов. В настоящее время используются транзисторные ключи на аморфном кремнии a-Si и на поликремнии p-Si. Поликремниевый слой получают методом лазерного отжига пленки аморфного кремния. Технология формирования матрицы транзисторов на аморфном кремнии в настоящее время хорошо отлажена и обеспечивает стабильные и однородные по площади параметры транзисторов. Поликремний обеспечивает лучшие токовые передаточные характеристики, чем аморфный кремний, однако в процессе производства очень трудно обеспечить высокую однородность характеристик, что приводит к заметной разнояркостности элементов и зон экрана. Для решения этой проблемы были опробованы различные альтернативные решения. В качестве одного из вариантов реализации ключевых токовых элементов были предложены даже MEMS-ключи. Для хорошо отлаженного в настоящее время формирования MEMS-компонентов используются те же технологические процессы, что и для обычных микросхем. Главное преимущество предложенной концепции управления — высокая однородность и стабильность параметров MEMS-ключей. Они имеют малое сопротивление во включенном состоянии и могут коммутировать большие токи. Разброс сопротивлений пренебрежительно мал. Время переключения ключей вполне достаточное для обеспечения коммутации в заданном временном интервале (см. рис. 3).

 

Рис. 3. Принцип работы MEMS-ключа.

 

На рис. 4 схематично изображены фазы управления OLED-пикселом на основе MEMS-ключа. Рассмотрим их подробнее.
T1— фаза записи данных в элемент памяти (конденсатор) в процессе выборки строки. Ключ SW1 открыт, MEMS-ключ SW2 разомкнут.
Т2— фаза хранения данных и управление током OLED-светодиода. Ключ SW1 закрыт, SW2— замкнут.
T3— фаза разряда. Конденсатор разряжается и размыкает ключ SW2.
Т4— фаза сохранения выключенного состояния. Прохождение тока через светодиод блокируется. Ключ SW1 закрыт и SW2 разомкнут.

 

Рис. 4. Фазы управления OLED-пикселом на основе MEMS-ключа (режим ШИМ-модуляции)

 

Для управления яркостью используется метод ШИМ. Сопротивление замкнутого MEMS-ключа около 20 Ом. Ключ способен пропускать токи до 15 мА. Время переключения ключа около 5 мкс. Потребление тока происходит только в режиме переключения, и оно незначительно по сравнению с остальной схемой управления и матрицей OLED. У этой технологии только один недостаток— для электростатического управления MEMS-ключом требуются высокие уровни напряжений 30…50 В, однако в серийно производимых MEMS-приборах также используется электростатическое управление с амплитудами сигналов в диапазоне 30…70 В.

Дисплейные технологии продолжают развиваться и совершенствоваться. Основные векторы их развития - снижение потребления дисплеев, увеличение уровня интеграции и широкое использование гибридных технологий. Продолжается внедрение технологий объемного изображения и проекционных технологий в секторе мобильных устройств. ак в секторе большеформатных дисплеев, так и в секторе мобильных устройств. Проекционные технологии на основе MEMS имеют хорошие перспективы.

За последние годы удалось достичь несомненного прогресса в области дисплейной технологии OLED. Расширяется рынок, растет объем продаж изделий с OLED-дисплеями. При создании OLED с большими экранами актуальной задачей является трассировка и рассеяние большой энергии. Суммарные токи на OLED c экраном 15–17 дюймов достигают несколько ампер, а выделяемая тепловая мощность - десятков ватт. Бурно развивающейся технологии OLED еще предстоит трудная борьба со своим очень сильным конкурентом - ЖК-дисплеями.


Лицензия