Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Видеокарты ПК. Типы графических карт. Встроенная графика. Видеопамять.

Видеокарты ПК. Типы графических карт. Встроенная графика. Видеопамять.

Видеокарта (также видеоадаптер, графический адаптер, графическая плата, графическая карта, графический ускоритель) - это устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

Однако эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения — качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты.

В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором - графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в разъём расширения, универсальный либо специализированный (AGP, PCI Express). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты - как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ (но в этом случае устройство, строго говоря, не может быть названо видеокартой).

Дискретные видеокарты - наиболее высокопроизводительный класс графических адаптеров. Как правило, подключается к высокоскоростной шине данных PCI Express. Ранее встречались видеокарты подключаемые к шинам AGP (специализированная шина обмена данных для подключения только видеокарт), PCI, VESA и ISA. На данный момент современные видеокарты подключаются только через шину PCI Express, а все прочие типы подключений являются устаревшими. В компьютерах с архитектурой отличной от IBM-совместимой встречались и другие типы подключения видеокарт.

Дискретная карта необязательно может быть извлечена из устройства (например, на ноутбуках дискретная карта часто распаяна на материнской плате). Она называется дискретной из-за того что выполнена в виде отдельного чипа (или набора микросхем) и не является частью других компонентов компьютера (в отличии от графических решений встраиваемых в чипы системной логики материнских плат или непосредственно в центральный процессор). Большинство дискретных видеокарт обладает своей собственной оперативной памятью (VRAM), которая часто может обладать более высокой скоростью доступа или более скоростной шиной доступа, чем обычная оперативная память компьютера. Хотя, ранее встречались видеокарты которые полностью или частично использовали основную оперативную память для хранения и обработки графической информации, в настоящее время почти все современные видеокарты используют собственную видеопамять. Также иногда (но достаточно редко) встречаются видеокарты оперативная память которых не установлена в виде отдельных микросхем памяти, а входит в состав графического чипа (в виде отдельных кристаллов, или же на одном кристалле с графическим процессором).

Выполненные в виде отдельного набора системной логики, а не в составе других микросхем, дискретные видеокарты могут быть достаточно сложными и гораздо более высокопроизводительными чем встроенная графика. Кроме того, обладая собственной видеопамятью у дискретных видеокарт нет необходимости делить оперативную память с другими компонентами компьютера (в первую очередь с центральным процессором). Собственная оперативная позволяет не тратить основное ОЗУ для хранения информации, которая не нужна центральному процессору и другим компонентам компьютера. С другой стороны, видеопроцессору не приходится ожидать очереди на доступ к оперативной памяти компьютера к которой может в данный момент обращаться как центральный процессор, так и другие компоненты. Все это положительно сказывается на производительности дискретных видеокарт по сравнению со встроенной графикой.

Такие технологии как SLI от Nvidia и CrossFire от AMD позволяют задействовать несколько графических адаптеров параллельно для решения одной задачи.

Встроенные графические процессоры (интегрированные графические адаптеры) не имеют собственной памяти и используют оперативную память компьютера, что сказывается на производительности в худшую сторону. Хотя графические процессоры Intel Iris Graphics, начиная с поколения процессоров Haswell имели в своём распоряжении 128 мегабайт кэша четвёртого уровня (eDRAM), остальную память они могут брать из оперативной памяти компьютера. Современные встроенные графические решения находят применение в портативных устройствах, ввиду низкого энергопотребления. Их производительность уже на достаточно высоком уровне и позволяет играть в несложные трёхмерные игры. Кэш подобного объема был у Haswell, но лишь в топовых моделях E7. eDRAM Crystalwell объемом 128 МБ играла роль кэш-памяти четвертого уровня, при этом eDRAM могла использоваться и графическим ядром, и вычислительными ядрами процессора при обработке больших объемов данных - например, текстур. По заявлению производителя, Crystalwell обеспечивает пиковую пропускную способность на уровне 51,2 Гбайт/с в каждую сторону (102,4 Гбайт/с суммарно). Crystalwell позволяет процессору преодолеть относительные ограничения низкой пропускной способности системной памяти и показать лучшее быстродействие в задачах по обработке HD-видео и в математических операциях.

В архитектуре Skylake реализована новая, полностью когерентная структура встроенной DRAM (eDRAM, или Memory Side Cache), способная кэшировать любые данные, включая варианты "некэшируемой памяти", без необходимости очистки для поддержания когерентности, и доступной для использования устройствами ввода-вывода и формирования выходного видеосигнала. Помимо этого графическая подсистема для достижения оптимальной производительности может выбрать режим кэширования определённых данных только в eDRAM без использования кэш-памяти L3.

В отличие от предыдущей архитектуры, где примерно четверть кэш-памяти L3 использовалась для доступа к eDRAM, и при этом eDRAM не имела возможности прямого взаимодействия с остальной системой, в архитектуре Skylake контроллер eDRAM переместился в модуль системного агента, освободив таким образом порядка 512 Кбайт ёмкости кэша L3 и одновременно с этим облегчив доступ другим компонентам ядра к данным в eDRAM. Отныне Memory Side Cache (eDRAM) может взаимодействовать с основной системной памятью напрямую, обеспечивая таким образом обновление экрана без необходимости вывода остальных компонентов процессора из ждущего режима.

Современные встроенные графические процессоры расположены на одном чипе с центральным процессором (например, Intel HD Graphics или Intel Iris Graphics), предыдущие поколения (например, Intel GMA) располагались в виде отдельного чипа.

Гибридные решения находят применение там где требуется и энергоэффективность, и высокая графическая производительность, позволяя использовать встроенный графический адаптер в повседневных задачах, и задействовать дискретный графический адаптер только там, где он нужен. До появления гибридной графики производители встраивали в дополнение к встроенному дискретный адаптер, для переключения между ними требовалась перезагрузка, что было не очень удобным для пользователя. Гибридные адаптеры для вывода на экран используют только встроенный графический адаптер, но некоторые вычисления способны передавать дискретной графической карте, а не выполнять самим. Для пользователя переключение между видеоадаптерами становится незаметным. Примерами таких решений являются технология Optimus от Nvidia и DualGraphics от AMD. APU (сокр. от Accelerated Processing Unit, ускоренное обрабатывающее устройство) – гибридный центральный процессор, который объединяет центральный процессор с графическим процессором в одном кристалле. В результате объединения CPU и GPU наблюдается общее снижение энергопотребления и стоимости системы. Гибридные ЦП дают возможность делать компактные системы, пригодные для большинства пользователей, не требующих мощных графических задач.

Внешняя видеокарта (eGPU) - под термином eGPU понимают дискретную графическую карту, расположенную вне компьютера. Может использоваться, например, для увеличения производительности в 3D приложениях на ноутбуках. Как правило PCI Express является единственной пригодной шиной для этих целей. В качестве порта может использоваться ExpressCard, mPCIe (PCIe х1, до 5 или 2.5 Гбит/с соответственно) или порт Thunderbolt 1, 2, или 3 (PCIe х4, до 10, 20, или 40 Гбит/с соответственно).

Современные видеокарты комплектуются памятью типа GDDR3, GDDR4, GDDR5, GDDR5X, GDDR6 и HBM, Wide I/O, HMC. Основам ныне применяемых стандартов DRAM уже не один десяток лет, и их улучшение позволило повысить пропускную способность, но далеко не настолько, насколько выросла производительность CPU и GPU за это время. Особенно это касается графических процессоров, и индустрии требуются новые типы памяти, которые дадут совершенно иные возможности, вроде Wide I/O, HMC и HBM.

Все эти стандарты основываются на так называемой stacked DRAM - размещении чипов памяти слоями, с одновременным доступом к разным микросхемам, что расширяет шину памяти, значительно повышая пропускную способность и немного снижая задержки (Stacked DRAM - размещение чипов памяти слоями, с одновременным доступом к разным микросхемам, что расширяет шину памяти, значительно повышая пропускную способность и немного снижая задержки).

Стандарт Hybrid Memory Cube (HMC), предлагаемый Intel и Micron, можно назвать наиболее универсальным, он должен позволить получить пропускную способность памяти (ПСП) до 480 ГБ/с при несколько больших энергопотреблении и себестоимости по сравнению с Wide I/O 2. Стандарт HMC не является стандартом JEDEC, но в консорциум входят такие крупные компании, как Samsung, Micron, Microsoft, Altera, ARM, Intel, HP, Xilinx, SK Hynix и другие, так что поддержка со стороны индустрии у стандарта достаточная. Однако среди поддерживающих HMC нет компаний AMD и Nvidia, выпускающих графические процессоры — они выбрали для себя конкурирующий (условно) стандарт компании Hynix - High Bandwidth Memory (HBM).

Современные видеокарты комплектуются памятью типа GDDR4, GDDR5, GDDR5X, GDDR6 и HBM. Следует также иметь в виду, что, помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину PCIE. В случае использования архитектуры Uniform Memory Access в качестве видеопамяти используется часть системной памяти компьютера.

HBM обеспечивает более высокую пропускную способность при меньшем расходе энергии и существенно меньших размерах по сравнению с DDR4 или GDDR5. Это достигается путём объединения в стек до восьми интегральных схем DRAM (включая опциональную базовую схему с контроллером памяти), которые соединены между собой с помощью сквозных кремниевых межсоединений (англ. Through-silicon via) и микроконтактных выводов (англ. microbumps).

Шина НВМ-памяти обладает существенно большей шириной по сравнению с памятью DRAM, в частности, НВМ-стек из четырёх кристаллов DRAM (4-Hi) - имеет два 128-битных канала на кристалл - в общей сложности 8 каналов и ширину в 1024 бита, а чип с четырьмя 4-Hi-НВМ-стеками будет иметь ширину канала памяти в 4096 бита (1024x4= 4096), притом ширина шины GDDR-памяти — 64 бита на один канал.

В стандарте HBM и аналогичных ему, вместо массива очень быстрых чипов памяти (7 ГГц и выше), соединенных с графическим процессором по сравнительно узкой шине от 128 до 512 бит, применяются очень медленные чипы памяти (порядка 1 ГГц эффективной частоты), но ширина шины памяти при этом получается шире в несколько раз. Как и в случае с GDDR5, ширина шины для различных GPU будет разной и она зависит как от поколения стандарта HBM (первого или второго на данный момент), так и конкретного воплощения. Компания AMD уже сообщила о применении четырех стеков (stacks, стопок или пачек) чипов памяти, каждый из которых состоит из четырех микросхем и дает 1024-битный интерфейс памяти. То есть в итоге на GPU получается просто широченная по меркам GDDR5-памяти шина в 4096 бит. Естественно, что при этом чипам памяти не обязательно работать на таких высоких частотах, как в случае GDDR5 - даже низких частот будет достаточно, чтобы по полосе пропускания памяти заметно обойти привычные доселе интерфейсы.

Такие типы памяти, как HMC и HBM, открыли гибридным процессорам совершенно новые возможности, и производительность встроенного графического ядра значительно вырастет. 12 января 2016 HBM2-память была стандартизирована как JESD235a. HBM2 позволяет разместить до 8 схем на штабеле, что удваивает пропускную способность.


Лицензия