Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Z-буфер. Разрядность. Качество 3D изображения.

Z-буфер. Разрядность. Качество 3D изображения.

В современных видеоадаптерах графический процессор может выполнять функции ускорения трехмерной графики, в него встраиваются специальные электронные схемы, которые выполняют растеризацию гораздо быстрее, чем программное обеспечение. Большинство современных наборов микросхем 3D-акселераторов обеспечивают выполнение следующих функций растеризации:

- растровое преобразование- определение того, какие пиксели экрана покрываются каждым из примитивов;

- обработка полутонов - цветовое наполнение пикселей с плавными цветовыми переходами между объектами;

- образование текстуры - наложение на примитивы двухмерных изображений и поверхностей;

- определение видимости поверхностей - определение пикселей, покрываемых ближайшими к зрителю объектами.

В трехмерном мире один объект может находиться впереди другого. Обычно световые лучи не проникают через непрозрачные объекты, поэтому мы видим все, что находится впереди, и не видим того, что позади.

Когда два объекта перекрываются, нужно выяснить, какой из них находится впереди, чтобы знать, какие пиксели объекта нужно показать на дисплее. Область, в которой пересекаются две фигуры, можно описать, указав для каждого пиксела фигур величину расстояния от него до условного заднего плана. Если дополнить обычную видеопамять картой этих расстояний для каждого пикселя, то будет всегда известно, нужно ли закрашивать конкретный пиксель: если значение расстояния (или значение Z) у пикселя меньше, значит, он позади и его не нужно закрашивать.

Эту идею можно реализовать аппаратно. Решение, состоит в создании параллельно с памятью дисплея другого массива памяти, называемого Z-буфером. Каждый раз при записи пикселя вычисляется его значение Z. При этом записываются только пиксели с большими значениями Z и обновляются расстояния в Z-буфере. Все остальные пикселы игнорируются. Таким образом, в каждой ячейке Z-буфера хранится расстояние по оси Z (вглубь экрана) для рисуемого пиксела, поэтому легко проверить, затенен ли новый записываемый пиксель или нет. Z-буфер требует дополнительной памяти, и, чем большая точность нужна для значений Z, тем больше памяти нужно для запоминания значений Z. Если используется разрешающая способность 640х400 и значения Z в виде 16-разрядных (двухбайтовых) чисел, то нужно иметь 0,5 мегабайта памяти только для Z-буфера. С помощью Z-буфера можно легко решить, какие объекты расположены на переднем плане, но при этом понадобится вдвое больший объем видеопамяти. От разрядности Z-буфера зависит разрешающая способность графического конвейера по глубине. При малой разрядности (например, 8 бит) для близко расположенных элементов рассчитанные значения Z могут совпасть, в результате картина перекрытий исказится. Большая разрядность буфера требует большого объема памяти, доступного графическому процессору. По нынешним меркам минимальная разрядность Z-буфера — 16 бит, профессиональные графические системы используют 32-битный Z-буфер. Почти все современные 3D-ускорители имеют 24-х или 32-битную Z-буферизацию, что в значительной мере повышает разрешающую способность и, как следствие, качество рендеринга.

Есть и другие решения проблемы со скрытыми поверхностями, но все они решаются путем компромисса между использованием памяти дисплея и дополнительной нагрузкой на процессор. Главный метод, применяемый для peшения проблем, заключается в том, чтобы упорядочить (отсортировать) вершины многоугольников по их координатам Z. Тогда сначала закрашиваются наиболее отдаленные объекты на экране, а наиболее близкие объекты накладываются на дальние. При этом возникают проблемы с поверхностями, наклонными к оси Z, так как расстояние пикселя от заднего плана может изменяться по мере его удаления от вершины. Решение такой проблемы требует еще более сложных вычислений.

Можно сократить работу процессора, при упорядочении объектов по их координатам Z. Если какая-то поверхность полностью скрыта другими или повёрнута от наблюдателя, то ее совсем не нужно рисовать первой. А если мы исключили операцию рисования, то многоугольник не надо заполнять картой текстуры, в связи с этим уменьшается количество работы для процессора.


Лицензия