Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по блокам питания

Стр. 1 из 23      1 2 3 4>> 23

Меры предосторожности при подключении питания к диагностируемой системной плате ПК.

Статья добавлена: 22.05.2020 Категория: Статьи по блокам питания

Меры предосторожности при подключении питания к диагностируемой системной плате ПК. Перед подключением питания нужно обязательно осуществить контроль возможных замыкании или наличия повышенной нагрузки в цепи питания для устройств, размещенных на системной плате ПК. В исследуемой системной плате необходимо произвести измерение сопротивления нагрузки между контактами номиналов вторичного напряжения (например, +5 вольт) и «землей» и др. на разъеме электропитания, что позволяет определить ненормальную (повышенную) нагрузку на источник электропитания, что может быть вызвано пробоем на землю или источника питания, или одного из выводов микросхемы, запитанной от этого источника. При прямом и обратном измерении сопротивления между «плюсом» исправного источника вторичного напряжения и землей, должна быть видна разница измеренного сопротивления в соотношении примерно 3:2, а слишком малым сопротивлением нагрузки считается примерно 30-32 Ома. Условное название «прямое» подключение означает, что минус клеммы прибора был подсоединен к общему контакту системной платы, а плюс клеммы прибора применялся в конкретной точке замера. Условное название «обратное» подключение означает, что плюс клеммы прибора был подсоединен к общему контакту системной платы, а минус клеммы прибора применялся в конкретной точке замера. Как видно из полученных нагрузочных сопротивлений занесенных в табл.1, сопротивление нагрузки уменьшается для положительных напряжений, если используется «обратное» подключение измерительного прибора. О возможном замыкании или наличии повышенной нагрузки в цепи питания для устройств, размещенных на системной плате можно судить, используя информацию, полученную измерением сопротивления нагрузок (в прямом и обратном включении омметра) с разъема ATX и ATX -12 вольт (рис. 1, рис. 2).

Сигнал PSI. Эффективность регулятора напряжения питания процессора (ликбез).

Статья добавлена: 20.05.2020 Категория: Статьи по блокам питания

Сигнал PSI. Эффективность регулятора напряжения питания процессора (ликбез). Регулировка подачи питания на процессор стала производится по сигналу PSI (Power Status Indicator) процессора, который генерируется, когда процессор находится в режиме Deeper Sleep. Сигнал PSI# обычно устанавливался, когда текущее максимально допустимое потребление ядра процессора меньше 20А. Установка этого сигнала индицирует, что контроллер VR не требует в данный момент значения тока более чем 20 А. Этот сигнал будет сброшен менее чем через 3,3 мкс до того, как текущее потребление превысит 20 А. Минимальное время установки и сброса сигнала – 1 BCLK.Таким образом сигнал PSI обеспечивает повышение экономичности работы VRM-модуля при малой загрузке.

Решение проблем с электропитанием компьютерных систем.

Статья добавлена: 11.03.2020 Категория: Статьи по блокам питания

Решение проблем с электропитанием компьютерных систем. Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к повреждениям оборудования, и проблемы, вызывающие повреждение данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышенным, любое напряжение ниже 205 В - пониженным. Повышенное напряжение может привести к выходу из строя источников питания компьютеров и другого оборудования. Электромоторы перегреваются при пониженном напряжении. Для микрокомпьютеров обычно используют источники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению. Аномалия в электропитании, которая особенно опасна для компьютеров и электроники вообще - это импульс, известный также как кратковременное повышение, выброс или колебание напряжения. Импульс - это очень короткое повышение напряжения, причиной которого может служить удар молнии в силовую линию, включение определенного типа силовых устройств либо управление двигателем переменной скорости. Типичный импульс, величина которого может составлять от нескольких сотен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд. Отключение энергии - проблема, требующая наиболее пристального внимания. Не заметить полную потерю питания действительно довольно сложно. Кратковременное отключение энергии - длящееся лишь от полупериода до пары периодов волны - часто называют выпадением питания. Радиочастотная интерференция ведет к возникновению электрошума, который накладывается на предполагаемо чистую, синусоидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в питающую шину компьютера, компьютер может ошибочно интерпретировать его как данные. Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления. Предполагается, что монтаж разводки питания в доме или офисе заземляется через одну точку - вход питания (другими словами, через главную распределительную панель, по которой электроэнергия подводится к зданию). Если монтаж сети переменного тока в здании выполнен так, что заземление осуществляется в двух или большем числе точек, то формируется замкнутая цепь, позволяющая токам циркулировать через заземление. Проблема токов в земле возникает потому, что все провода обладают различным сопротивлением, и токи, циркулирующие в цепи, вызывают различное падение напряжения в заземленных проводах. И это несмотря на то, что все они, как предполагается, имеют нулевой потенциал. Различие напряжений может вызвать все что угодно, начиная от биений с тактовой частотой 50 Гц до высокочастотных шумов, которые могут вести к неправильной интерпретации данных компьютером. Существует несколько путей борьбы с проблемами электропитания.

MOSFET-транзисторы - электронные ключи импульсных преобразователей напряжения питания.

Статья добавлена: 16.01.2020 Категория: Статьи по блокам питания

MOSFET-транзисторы - электронные ключи импульсных преобразователей напряжения питания. В качестве электронного ключа импульсных преобразователей напряжения питания компонентов материнских плат всегда используется пара полевых n-канальных МОП-транзисторов (MOSFET-транзисторы). Сток одного транзистора (T1, рис. 1) подключен к линии питания 12 В, исток этого транзистора соединен с точкой выхода и стоком другого транзистора (Т2, рис. 1), а исток второго транзистора заземлен (рис. 1). Управляющие сигналы подаются на затворы этих транзисторов. Обозначение этого типа транзисторов показано на рис. 2 (также для сокращения числа внешних компонентов в транзистор может быть встроен мощный высокочастотный демпферный диод). MOSFET - это аббревиатура от английского словосочетания Metal-Oxide-Semiconductor Field Effect Transistor (Металл-Оксидные Полупроводниковые Полевые Транзисторы). Данный класс транзисторов отличается, прежде всего, минимальной мощностью управления при значительной выходной (сотни ватт). Также необходимо отметить чрезвычайно малые значения сопротивления в открытом состоянии (десятые доли ома при выходном токе в десятки ампер), а следовательно, минимальную мощность, выделяющуюся на транзисторе в виде тепла. К неоспоримым преимуществам MOSFET транзисторов перед биполярными можно отнести следующие: - минимальная мощность управления и большой коэффициент усиления по току обеспечивает простоту схем управления (есть даже разновидность MOSFET, управляемых логическими уровнями); - большая скорость переключения (при этом минимальны задержки выключения, обеспечивается широкая область безопасной работы); - возможность простого параллельного включения транзисторов для увеличения выходной мощности; - устойчивость транзисторов к большим импульсам напряжения (dv/dt). Данные приборы находят широкое применение и в устройствах управления мощной нагрузкой, импульсных источниках питания (до 1000 В). MOSFETс N-каналом наиболее популярны для коммутации силовых цепей. Напряжение управления или напряжение, приложенное между затвором и истоком для включения MOSFET, должно превышать порог UT 4 В, фактически необходимо 10-12 В для надежного включения MOSFET. Снижение напряжения управления до нижнего порога UT приведет к выключению MOSFET. Силовые MOSFET выпускают различные производители: - HEXFET (фирма NATIONAL); - VMOS (фирма PHILLIPS); - SIPMOS (фирма SIEMENS).

Общая методика и практические рекомендации по ремонту источников питания персональных компьютеров (ликбез).

Статья добавлена: 27.12.2019 Категория: Статьи по блокам питания

Общая методика и практические рекомендации по ремонту источников питания персональных компьютеров (ликбез). Источник питания современного (ПК) представляет собой достаточно сложное радиоэлектронное устройство, ремонт которого можно осуществлять, только зная принципы его построения и работы (и естественно, владея навыками нахождения и устранения дефектов в радиоэлектронных устройствах). При ремонте рекомендуется комплексное использование всех доступных способов поиска неисправностей. Необходимо помнить, что источник импульсного питания не работает без нагрузки, подсоединение к сети должно происходить только через развязывающий трансформатор и помните, что лабораторный автотрансформатор (ЛАТР) развязывающим трансформатором не является. Перед первым включением источника питания обратите внимание на положение переключателя типа питающей сети (рекомендуется сразу адаптировать аппарат под нашу сеть, исключив (методом выпаивания) все элементы, влекущие возможность ошибочного включения источника). Всегда любой ремонт начинается с очень внимательного предварительного внешнего осмотра ремонтируемого объекта. В большинстве случаев это позволяет отремонтировать блок питания даже при отсутствии достаточной информации. При осмотре необходимо обращать внимание на исправность предохранителей и на любое изменение внешнего вида элементов электрической схемы (цвета корпуса элемента, вздутость корпуса, обрывы соединений и др.). При определении неисправного элемента следует обратить внимание на исправность всех элементов, подключенных именно к этой цепи. Ремонт следует проводить технически исправными приборами, с использованием низковольтных паяльников, питающихся через разделительный трансформатор. Нежелательно производить ремонт без развязывающего трансформатора и нагрузки. Для блока питания мощностью 200 Вт рекомендуется использовать для источника питания +5В нагрузку сопротивлением 4,8 Ом (50 Вт), а для источника +12В нагрузку 14 Ом (12 Вт), в качестве достаточной нагрузки источника питания по каналу +12В могут быть использованы автомобильные лампочки на 12 В. Во время пробных включений источника питания (во время ремонта и после проведения его ремонта) рекомендуется вместо предохранителя включить лампу накаливания на 250В/100Вт. Этот прием дает реальный шанс не пожечь силовые транзисторы высокочастотного преобразователя. Если при включении питания лампа будет гореть тускло, то можно установить предохранитель на место, а в случае яркого свечения лампы, питание необходимо выключить и продолжить поиски неисправности. Проявления неисправности блока питания, которые могут иметь место при неисправности блока питания, могут быть очевидными и неочевидные. Например, компьютер вообще не работает, появление дыма и запаха при включении питания, сгорает предохранитель на распределительном щите и др.. Неочевидные причины неисправности - для определения неисправного элемента требуют дополнительной диагностики системы, т. к. явно не проявляют себя, но тем не менее они влияют на работоспособность источника питания. Например, мы видим ошибки системы, которые не указывают на неисправность блока питания:

MOSFET-транзисторы (электронные ключи) различных производителей.

Статья добавлена: 04.12.2019 Категория: Статьи по блокам питания

MOSFET-транзисторы (электронные ключи) различных производителей. В качестве электронного ключа импульсных преобразователей напряжения питания компонентов материнских плат всегда используется пара полевых n-канальных МОП-транзисторов (MOSFET-транзисторы). Сток одного транзистора (T1, рис. 1) подключен к линии питания 12 В, исток этого транзистора соединен с точкой выхода и стоком другого транзистора (Т2, рис. 1), а исток второго транзистора заземлен (рис. 1). Управляющие сигналы подаются на затворы этих транзисторов. Данный класс транзисторов отличается, прежде всего, минимальной мощностью управления при значительной выходной (сотни ватт). Также необходимо отметить чрезвычайно малые значения сопротивления в открытом состоянии (десятые доли ома при выходном токе в десятки ампер), а следовательно, минимальную мощность, выделяющуюся на транзисторе в виде тепла. Современные MOSFET-транзисторы имеют ограничение по току не ниже 40 A (а в последнее время наблюдается тенденция перехода на MOSFET-транзисторы с ограничением по току в 75 А). Понятно, что при таких ограничениях по току на каждой фазе волне достаточно применять шесть фаз питания. Такой регулятор напряжения теоретически способен обеспечить ток процессора более 200 А, а следовательно, энергопотребление более 200 Вт. В каждой фазе питания применяются и более мощные силовые MOSFET-транзисторы, например, NTMFS4834N компании On Semiconductor с ограничением по току в 130 A (при таких ограничениях по току сами по себе силовые транзисторы не являются узким местом фазы питания). Качество электропитания и обеспечение требуемой подводимой мощности – это ключевые факторы для достижения заданной производительности ЦП. Например, система на плате GA-X58A-UD9 оснащена передовой схемой питания, которая способна предоставить в распоряжение процессора до 1500 Вт.

Регуляторы напряжения (LDO).

Статья добавлена: 14.11.2019 Категория: Статьи по блокам питания

Регуляторы напряжения (LDO). LDO регуляторы - тип линейных регуляторов напряжения, отличающихся малым падением напряжения на регулирующем элементе. LDO регуляторы - тип линейных регуляторов напряжения, отличающихся малым падением напряжения на регулирующем элементе. Один из главных параметров - падение напряжения (dropout) VDROP, определяется как минимальное напряжение между входом и выходом стабилизатора, при котором схема стабилизации сохраняет работоспособность. В большинстве методик тестирования это напряжение измеряется при уменьшении входного напряжения VIN, когда напряжение на выходе VOUT снижается на 100 мВ относительно нормального режима работы схемы стабилизации (когда VIN = VOUT +5 В). В обычном регуляторе используется составной n-p-n транзистор, работающий в линейной области. В LDO регулирующим элементом является один p-n-p транзистор, поэтому минимальное падение напряжения на нем равно напряжению насыщения коллектор-эмиттерного перехода этого транзистора. В некоторых микросхемах LDO регуляторов используются полевые транзисторы. В любом случае напряжение VDROP зависит от тока нагрузки и температуры перехода (открытого канала). Кроме стандартных регуляторов, в линейке LDO регуляторов, например, фирмы National Semiconductor имеются несколько групп приборов, ориентированных на конкретные области применения. Есть стабилизаторы отрицательного напряжения, которые представлены двумя микросхемами LM2990 (фиксированные значения выходных напряжений: -5В; -5,2В; -12В;-15В), LM2991 (регулируемый -3…-24 В). Отличаются самым большим значением VDROP в семействе LDO регуляторов - около 0,6 В при нагрузке в 1 А. Есть многоканальные: двухканальные (LM9072; LM9073; LP3986 LP2966 LP2967 LP2956), трехканальные (так называемые "Microprocessor Power Supply System (MPSS) LP2984).

Проблемы, связанные с электрической сетью, и средства их решения.

Статья добавлена: 13.09.2019 Категория: Статьи по блокам питания

Проблемы, связанные с электрической сетью, и средства их решения. Известно, что на территории России ГОСТ 13109-87 определяет следующие параметры электрических сетей: напряжение 220В +- 10%; частота 50 Гц +- 1 Гц; коэффициент нелинейных искажений формы напряжения менее 8% (длительно) и менее 12% (кратковременно). Но гладко бывает только на бумаге. В реальной жизни меньше всего проблем возникает, пожалуй, только с частотой питающего напряжения. Длительное отключение напряжения (blackout) - это обычно следствие сбоя в работе линии электропитания. Оно может стать причиной неожиданного и потенциально опасного отключения всего электронного оборудования. Обычно это приводит к повреждению файлов, потере и искажению хранимых данных, к выходу аппаратуры из строя. Высоковольтные одиночные импульсы, или всплески (sрike), появляются в результате образования электрической дуги или при включении/выключении электрических нагрузок. Подобные искажения формы сигнала способны вывести из строя электронные схемы и повредить хранящиеся на компьютерах данные. Скачки перенапряжения (surge) в большинстве случаев вызваны резкими и значительными изменениями нагрузки на сеть и переключениями линий электропитания. В результате таких явлений может быть серьезно повреждено электронное оборудование. Провалы (sags) и снижение напряжения (brownout) в большинстве случаев происходят при запуске электродвигателей или из-за неисправности линий электропитания. Они становятся причиной сбоев в работе и внезапных отключений компьютеров, аппаратуры контроля технологических процессов и т. п. Кроме того, при частых снижениях напряжения оборудование преждевременно изнашивается. Электронный шум обычно порождается либо работой электрических машин (Electro Magnetic Interference, EMI), либо функционированием радиоустройств (Radio Frequency Interference, RFI). Таким образом, его могут вызывать как лампы освещения или работающее промышленное оборудование, так и мощный радиопередатчик. Поскольку под воздействием сильного шума форма питающего напряжения обычно серьезно искажается, то это ведет, как правило, к аппаратным сбоям и ошибкам при выполнении программ. Таким образом, можно сделать вывод, что применение различных устройств, поддерживающих требуемые параметры питающего напряжения (регуляторов, стабилизаторов, специальных сетевых фильтров) в большинстве случаев оправданно.

Основные параметры аккумуляторов (ликбез).

Статья добавлена: 12.09.2019 Категория: Статьи по блокам питания

Основные параметры аккумуляторов (ликбез). При покупке аккумулятора потребитель должен знать на какие параметры батареи ему нужно обратить внимание. К основным параметрам аккумулятора, по которым можно оценить его возможности и качество относятся: номинальная емкость (та, которая должна быть), реальная емкость и внутреннее сопротивление, отдаваемая емкость, коэффициент отдачи, коэффициент полезного действия аккумулятора, срок службы. Номинальная емкость аккумулятора - это количество электрической энергии, которой аккумулятор теоретически должен обладать в заряженном состоянии. Количество энергии определяется при разряде аккумулятора постоянным током в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется в ампер-часах (А*час) или миллиампер-часах (mA*час). Ее значение указывается на этикетке аккумулятора или зашифровано в обозначении его типа. Практически эта величина колеблется от 80 до 110% от номинального значения и зависит от большого числа факторов: от фирмы-изготовителя, условий и срока хранения, от технологии ввода в эксплуатацию, технологии обслуживания в процессе эксплуатации, используемых зарядных устройств, условий и срока эксплуатации и т.д. Теоретически аккумулятор номинальной емкостью 600 мА*час может отдавать ток 600mA в течение одного часа, 60 мА в течение 10 часов, или 6mA в течение 100 часов. Практически же, при высоких значениях тока разряда номинальная емкость никогда не достигается, а при низких токах превышается. Номинальное значение емкости аккумулятора часто обозначается буквой “C”, поэтому здесь часто встречаются обозначения типа: С, 1/10 C или C/10. Когда говорят о разряде аккумулятора, равном 1/10 C, это означает разряд током, величина которого равна десятой части от величины номинальной емкости аккумулятора. Так например, для аккумулятора емкостью 600 мА*час это будет разряд током 600/10 = 60mA. Подобно вышесказанному о разряде аккумуляторов, при заряде значение 1/10 C означает заряд током, равным десятой части заявленной емкости аккумулятора. Реальная емкость нового аккумулятора, как правило, составляет от 110 до 80 % от значения номинальной емкости. Нижний предел в 80 % обычно рассматривается в качестве минимально допустимого значения для нового аккумулятора.

Проблемы автономного питания ноутбука.

Статья добавлена: 06.09.2019 Категория: Статьи по блокам питания

Проблемы автономного питания ноутбука. Cлабым местом ноутбуков традиционно считаются довольно часто отказывающие аккумуляторы. Современные элементы питания выпускают на основе литиево-ионных и литиево-полимерных конструкций. Однако всего три-четыре года назад, применялись и никель-металлгидридные компоненты. Аккумуляторные батареи составляют основу автономного питания ноутбука. Естественно, в процессе их эксплуатации отдельные элементы батареи могут постепенно терять свои свойства и выходить из строя. Это приводит к снижению общей емкости батареи, и это не остается незамеченным. Такой источник автономного питания оказывается не в состоянии выдавать требуемое напряжение в течение расчетного времени. Поэтому источники питания необходимо периодически проверять. Оценка работоспособности осуществляется путем замера времени разряда батарей при отключении питания или посредством тестирования элементов его батареи с помощью специального прибора. Метод тестирования весьма прост и заключается в измерении проводимости (более высокая проводимость означает большую емкость батареи). Измерения могут выполняться как на отключенных, так и на работающих батареях, если однотипные батареи эксплуатировались в одном режиме, то результаты измерений проводимости их элементов должны быть одинаковыми. При значении разницы более 20 - 40%, требуется заменить элемент или всю батарею. Наиболее совершенные приборы кроме измерения проводимости выполняют и математическую обработку результатов в целях устранения влияния на итоговый результат уровня заряда батареи и температуры во время измерения, а также сохраняют данных для вывода отчета на принтер. Но, прежде всего, нужно соблюдать правила эксплуатации ноутбука и его батареи. После того, как вы купили новое устройство, не начинайте использовать его с минимальным зарядом. Сначала полностью зарядите устройство. С ёмкой батареей этот процесс может затянуться часов на восемь, но тогда встроенный микропроцессор, который не допускает чрезмерного заряда аккумулятора, сможет точно измерить полную ёмкость батареи.

Базовые принципы организации импульсных регуляторов напряжения (DC-DC Converter понижающего типа).

Статья добавлена: 27.08.2019 Категория: Статьи по блокам питания

Базовые принципы организации импульсных регуляторов напряжения (DC-DC Converter понижающего типа). Базовая схема понижающего преобразователя постоянного тока представлена на рис. 1. Регуляторы такого типа в современной импортной литературе получили название Buck Converter или Buck Regulator. Транзистор Q1 в этой схеме является ключом, который, замыкаясь/размыкаясь, создает из постоянного напряжения импульсное напряжение. При этом амплитуда формируемых импульсов равна 12В. Для повышения эффективности преобразования, Q1 должен переключаться с высокой частотой (чем выше частота, тем эффективнее преобразование). В реальных схемах регуляторов системных плат частота переключения транзисторов преобразователя может находиться в диапазоне от 80 кГц до 2 МГц. Далее, полученное импульсное напряжение сглаживается дросселем L1 и электролитическим конденсатором C1. В результате, на C1создается постоянное напряжение, но меньшей величины. При этом величина созданного постоянного напряжения будет пропорциональна ширине импульсов, полученных на выходе Q1. Если транзистор Q1 открывается на большее время, то энергия, накопленная на L1, также будет больше, что, в итоге, приводит к повышению напряжения на C1. Соответственно, и, наоборот – при меньшей длительности открытого состояния транзистора Q1 , напряжение на С1 снижается. Этот метод регулирования постоянного напряжения получил название широтно-импульсная модуляция - ШИМ (PWM – Pulse Width Modulation).

Проблемы системы электропитания опасные для компьютеров.

Статья добавлена: 08.08.2019 Категория: Статьи по блокам питания

Проблемы системы электропитания опасные для компьютеров. Аномалия в электропитании, которая особенно опасна для компьютеров и электроники вообще - это импульс, известный также как кратковременное повышение, выброс или колебание напряжения. Импульс - это очень короткое повышение напряжения, причиной которого может служить удар молнии в силовую линию, включение определенного типа силовых устройств либо управление двигателем переменной скорости. Типичный импульс, величина которого может составлять от нескольких сотен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд. Отключение энергии - проблема, требующая наиболее пристального внимания. Не заметить полную потерю питания действительно довольно сложно. Кратковременное отключение энергии - длящееся лишь от полупериода до пары периодов волны - часто называют выпадением питания. Радиочастотная интерференция ведет к возникновению электрошума, который накладывается на предполагаемо чистую, синусоидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в питающую шину компьютера, компьютер может ошибочно интерпретировать его как данные. Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления. Предполагается, что монтаж разводки питания в доме или офисе заземляется через одну точку - вход питания (другими словами, через главную распределительную панель, по которой электроэнергия подводится к зданию). Если монтаж сети переменного тока в здании выполнен так, что заземление осуществляется в двух или большем числе точек, то формируется замкнутая цепь, позволяющая токам циркулировать через заземление. Проблема токов в земле возникает потому, что все провода обладают различным сопротивлением, и токи, циркулирующие в цепи, вызывают различное падение напряжения в заземленных проводах. И это несмотря на то, что все они, как предполагается, имеют нулевой потенциал. Различие напряжений может вызвать все что угодно, начиная от биений с тактовой частотой 50 Гц до высокочастотных шумов, которые могут вести к неправильной интерпретации данных компьютером. Существует несколько путей борьбы с проблемами электропитания.

Стр. 1 из 23      1 2 3 4>> 23

Лицензия