Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


MOSFET-транзисторы (ликбез).

MOSFET-транзисторы (ликбез).

В качестве электронного ключа импульсных преобразователей напряжения питания компонентов материнских плат всегда используется пара полевых n-канальных МОП-транзисторов (MOSFET-транзисторы). Сток одного транзистора (T1, рис. 1) подключен к линии питания 12 В, исток этого транзистора соединен с точкой выхода и стоком другого транзистора (Т2, рис. 1), а исток второго транзистора заземлен (рис. 1). Управляющие сигналы подаются на затворы этих транзисторов.

 

Рис. 1.

Обозначение этого типа транзисторов показано на рис. 2 (также для сокращения числа внешних компонентов в транзистор может быть встроен мощный высокочастотный демпферный диод). MOSFET - это аббревиатура от английского словосочетания Metal-Oxide-Semiconductor Field Effect Transistor (Металл- Оксидные Полупроводниковые Полевые Транзисторы). Данный класс транзисторов отличается, прежде всего, минимальной мощностью управления при значительной выходной (сотни ватт). Также необходимо отметить чрезвычайно малые значения сопротивления в открытом состоянии (десятые доли ома при выходном токе в десятки ампер), а следовательно, минимальную мощность, выделяющуюся на транзисторе в виде тепла.

Рис. 2. Обозначение MOSFET транзисторов (G - затвор, D - сток, S - исток): а - обозначение N-канального транзистора; б - обозначение Р-канального транзистора.

К неоспоримым преимуществам MOSFET транзисторов перед биполярными можно отнести следующие:

- минимальная мощность управления и большой коэффициент усиления по току обеспечивает простоту схем управления (есть даже разновидность MOSFET, управляемых логическими уровнями);

- большая скорость переключения (при этом минимальны задержки выключения, обеспечивается широкая область безопасной работы);

- возможность простого параллельного включения транзисторов для увеличения выходной мощности;

- устойчивость транзисторов к большим импульсам напряжения (dv/dt).

Данные приборы находят широкое применение и в устройствах управления мощной нагрузкой, импульсных источниках питания (до 1000 В).

MOSFETс N-каналом наиболее популярны для коммутации силовых цепей. Напряжение управления или напряжение, приложенное между затвором и истоком для включения MOSFET, должно превышать порог UT 4 В, фактически необходимо 10-12 В для надежного включения MOSFET. Снижение напряжения управления до нижнего порога UT приведет к выключению MOSFET. Силовые MOSFET выпускают различные производители:

- HEXFET (фирма NATIONAL);

- VMOS (фирма PHILLIPS);

- SIPMOS (фирма SIEMENS).

Наблюдается сходство внутренней структуры HEXFET, VMOS и SIPMOS. Они имеют вертикальную четырехслойную структуру с чередованием Р и N слоев: Такая структура вызвана тяжелыми режимами работы N-канальных MOSFET. Если напряжение, приложенное к выводам затвора, выше порогового уровня, затвор смещается относительно истока, создавая инверсный N-канал под пленкой оксида кремния, который соединяет исток со стоком для протекания тока. Проводимость MOSFET обеспечивается за счет основных носителей, так как отсутствуют инжектированные неосновные носители в канале. Это не приводит к накоплению заряда, что ускоряет процесс переключения. Во включенном состоянии зависимость между током и напряжением почти линейна, аналогично сопротивлению, которое рассматривается как сопротивление канала в открытом состоянии.

Эквивалентная цепь MOSFET показана на рис. 3. Два емкостных сопротивления между затвором и истоком, затвором и стоком приводят к задержке переключения, если драйвер не может поддерживать большой ток включения. Еще одно емкостное сопротивление транзистора находится между стоком и истоком, но из-за внутренней структуры транзистора шунтируется паразитным диодом, образованным между стоком и истоком. К сожалению, паразитный диод не быстродействующий и его не следует принимать во внимание, а для ускорения переключения вводится дополнительный шунтирующий диод.

 

Рис. 3. Схема замещения MOSFET: а - первый вариант эквивалентной схемы; б - второй вариант эквивалентной схемы с замещением транзистора диодом; в - внутренняя структура, соответствующая первому варианту.

Основные характеристики: максимальное напряжение "сток-исток", UDS - максимальное мгновенное рабочее напряжение. Продолжительный ток стока, ID - максимальный ток, который может проводить MOSFET, обусловленный температурой перехода. Максимальный импульсный ток стока, IDM - больше, чем ID и определен для импульса заданной длительности и рабочего цикла. Максимальное напряжение "затвор-исток" age, UGS - максимальное напряжение, которое может быть приложено между затвором и истоком без повреждения изоляции затвора. Кроме того, имеют место: пороговое напряжение затвора, UT {UTH, UGS}; UT - минимальное напряжение затвора, при котором транзистор включается.


Лицензия