Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


ШИМ-контроллер SG6105.

ШИМ-контроллер SG6105.

 

В блоках питания ряда производителей для управления силовым каскадом применяется микросхема ШИМ SG6105. Она выполняет одновременно функции ШИМ-контроллера, супервизора напряжений и регулятора напряжений. 

Основные функции данной микросхемы это:
1. формирование выходных импульсов для управления двухтактным полумостовым преобразователем, с изменяющейся длительностью (ШИМ), которые следуют в противофазе с площадкой "мертвой" зоны;
2. Обеспечение защиты от превышения выходных напряжений блока питания в каналах +3.3V, +5V и + 12V;
3. Обеспечение защиты от короткого замыкания в нагрузке каналов +3.3V, +5V и +12V;
4. Обеспечение защиты от короткого замыкания в нагрузке канала -12V (и/или канала -5V);
5. Обеспечение защиты от превышения питающего напряжения микросхемы и защиту от короткого замыкания;
6. Обеспечивает формирование сигнала PowerGood (питание в норме);
7. Осуществляет контроль состояния сигнала удаленного управления - сигнала PS-ON и осуществляет запуск и выключение блока питания;
8. Формирует временную задержку при включении и выключении блока питания;
9. Обеспечивает "мягкий" старт при запуске блока питания;
10. Осуществляет управление оптроном обратной связи в цепи дежурного источника.

Микросхема ШИМ SG6105 применяется для управления силовым каскадом. Она выполняет одновременно функции ШИМ-контроллера, супервизора напряжений и регулятора напряжений.

Основные функции данной микросхемы это:

1. Формирование выходных импульсов для управления двухтактным полумостовым преобразователем, с изменяющейся длительностью (ШИМ), которые следуют в противофазе с площадкой "мертвой" зоны;

2. обеспечение защиты от превышения выходных напряжений блока питания в каналах +3.3V, +5V и + 12V;

3. обеспечение защиты от короткого замыкания в нагрузке каналов +3.3V, +5Vи +12V;

4. обеспечение защиты от короткого замыкания в нагрузке канала -12V (и/или канала -5V);

5. обеспечение защиты от превышения питающего напряжения микросхемы и защиту от короткого замыкания;

6. обеспечивает формирование сигнала PowerGood (питание в норме);

7. осуществляет контроль состояния сигнала удаленного управления - сигнала PS-ON и осуществляет запуск и выключение блока питания;

8. формирует временную задержку при включении и выключении блока питания;

9. обеспечивает "мягкий" старт при запуске блока питания;

10. осуществляет управление оптроном обратной связи в цепи дежурного источника.

Микросхема SG6105 имеет 20-контактный DIP-корпус, выводы микросхемы подключаются к соответствующим схемам блока питания. Назначение выводов микросхемы приведено в таблице 2, а основные параметры в табл. 1. Последовательность формирование сигналов на выводах будет рассмотрена по ходу статьи.

               Таблица 1. Основные параметры микросхемы.

Параметр

Значение

Напряжение питания микросхемы (Vcc) вывод 20.

16В

Выходной ток на выводах 10,11,14 (Iout)

30mA

Напряжение на выходах регуляторов FBI и FB2 (Vfb)

16В

Общий ток потребления

от 5 до 10 mA

Рассеиваемая мощность (при 90°С)

0.5 Вт

Рабочая температура

От -30 до +125°С

Максимальная рабочая температура кристалла

150°С

Температура при хранении

От -55 до +150°С     

Таблица 2. Назначение выводов микросхем SG6105

Обознач.

Описание

1

PSON

Сигнал включения/выключения микросхемы. Этот сигнал формируется системной платой.

Микросхема запускается и работает при низком уровне сигнала PSON.При установке сигнала PSON в высокий уровень, микросхема выключается, и ШИМ импульсы не ее выходе пропадают через 26 мс.

2

V33

Контакт контроля выходного напряжения +З.ЗВ и защиты от превышения и снижения напряжения в этом канале.

3

V5

Контакт контроля выходного напряжения +5В и защиты от превышения и снижения напряжения в этом канале.

4

ОРР

Контакт защиты от превышения питающего напряжения вывод соединен со средней точкой управляющего трансформатора.

5

UVAC

Контакт контроля выходного напряжения блока питания. Через этот вход определяется момент пропадания напряжения на выходе блока питания, а также момент, когда номинал напряжения становится ниже допустимого значения.

6

NVP

Вход защиты каналов отрицательных напряжений -5В и -12В.

7

V12

Контакт контроля выходного напряжения +12В и защиты от превышения и снижения напряжения в этом канале.

8, 9

ОР2, ОР1

Выходы, на которых формируются ШИМ импульсы, управляющие силовыми транзисто­рами силового каскада блока питания. Импульсы следуют в противофазе.

10

PG

Сигнал «питание в норме» - PowerGood, логическая «1» показывает, что все выходные напряжения блока питания находятся в заданном диа­пазоне значений. Сигнал PG устанавливается в высокий уровень с временной задержкой 300 мс после того, как все напряжения достигнут заданных значений.

11

FB2

Второй выход, предназначенный для управления внешней цепью регулятора  напряжения +3.3В.

12

VREF2

Второй вход опорного напряжения 2.5В для управления внешней цепью

регулятора напря­жения 3.3.В.

13

VREF1

Первый вход опорного напряжения 2.5В для управления внешней цепью

дополнительного источника питания +5VSTB.

14

FBI

Первый выход, предназначенный для управления цепью дополнительного источника питания +5VSTB.

15

GND

Контакт для подключения к «земле».

16

СОМР

Выход внутреннего усилителя ошибки обратной связи. Потенциал

этого контакта определяет длительность импульсов на выходах ОР1 и ОР2.

17

IN

Инвертирующий вход внутреннего усилителя ошибки. На вывод IN

подается напряжение обратной связи с выходных каналов +5В и +12В.

Увеличение напряжения на контакте IN приводит к уменьшению длительности импульсов на контактах ОР1 и ОР2.

18

SS

Контакт для обеспечения "мягкого старта". К этому контакту подключаться

внеш­ний конденсатор C26, емкость которого определяет длительность периода "мягкого старта". Заряд внешнего конденсатора обусловлен внутренним источником тока на 8мкА.

19

RI

Вход "программирования" опорного напряжения микросхемы. К этому контакту подключается внешний резистор R30.

20

VCC

Напряжение питания микросхемы 5V_SB от дежурного питания.

 

Рис. 1. Структурная схема ШИМ контроллера SG6105.

 

Удаленное управление

Схема удаленного управления реализована в микросхеме SG6105. Схема контролирует состояние сигнала PSON, формируемого системной платой персонального компьютера. Сам сигнал подается на конт.1 микросхемы, который является одним из входов внутреннего компаратора. Если сигнал активен низким уровнем «0», то внутренний компаратор микросхемы U3 переключается (см. рис. 1) и происходит запуск микросхемы. После установки сигнала в низкий уровень, ШИМ импульсы на выходе микросхемы появляются через 7.5 мс. При установке же сигнала PSON в высокий уровень, микросхема выключается, и ШИМ импульсы не ее выходе пропадают через 26 мс. Временные задержки 7.5 и 26 мс обеспечиваются внутренним каскадом микросхемы.

Вторичные выпрямители

Выходные выпрямители построены по двухполупериодной схеме (см. рис. 3). Диодная сборка D31 обеспечивает получение выходного напряжения + 12 В. Элементы L6, L9, С40, С24 образуют сглаживающий фильтр этого напряжения. Выходное напряжение +5 В формируется диодными сборками D29,D30. Сглаживающий фильтр образован элементами L6, L8, С20, С21. Отрицательнoе напряжения -12 В формируются при помощи диодных выпрямителей D16, D17. Сглаживающий фильтр этого канала образован L6, L7, C16. Выходной канал -5В формируется из напряжения -12В при помощи интегрального стабилизатора U1. Стабилизация выходных напряжений осуществляется по сигналу обратной связи из каналов +5В и +12В, суммарный сигнал подается на вывод 17 управляющей микросхемы U3.

Источник питания +3,3 В выполнен на стабилизаторе компенсационного типа. В качестве выпрямителя используется диодная сборка D32. Роль регулирующего элемента выполняет транзистор Q7, ток базы ему задается сигналом от управляющей микросхемы U3. Выходное напряжение источника измеряется делителем R32, R29, R35 и подается на вывод 2 управляющей микросхемы. Резисторы R27, R26, R61, R22 являются нагрузками холостого хода источников +12 В, +5 В, -5 В, -12 В, соответственно.

Схемы защиты блока питания

В блоке питания реализовано несколько схем защит:

Первая из них, это защита от превышения питающего напряжения реализована с помощью внутреннего компаратора микросхемы U3 сравнивающего уровень сигнала ОРР (конт.4) с опорным напряжением 2.4В. Увеличение сигнала ОРР свыше 2.4В приводит к срабатыванию защиты с временной задержкой 7 мс, и выключению микросхемы. Сигнал ОРР в блоке питания снимается со средней точки согласующего трансформатора Т3, и через делитель R7, R6 прикладывается к конт.4 микросхемы SG6105.

Вторая схема защиты контролирует перенапряжение и короткое замыкание в каналах +5В, +3.3B+12B, а также короткое замыкание в каналах -12В и -5В и питающее напряжение OPP. Контролируемые уровни напряжений подаются на выводы микросхемы 2,3,4,6,7. Срабатывание любой из защит, приводит к формированию на выходе триггера защиты сигнала высокого уровня. Этим сигналом открывается внутренний транзистор микросхемы (см. рис.1), коллектор которого соединен с "+" входом усилителя ошибки и с контактом 18 (SS). Открывание транзистора приводит к установке низкого уровня на "+" входе усилителя ошибки, к блокировке ШИМ-компаратора, и дальнейшему пропаданию импульсов на выводах 8, 9. Триггер защиты управляется четырех-входовым элементом ИЛИ, на который подаются сигналы от соответсвующих блоков защиты (см. рис. 1) В случае срабатывания любой из схем, сигналом с триггера защиты сбрасывается сигнал PG (вывод 10).

Третья схема защиты контролирует первичный ток блока питания. Контроль реализован через вывод 5 микросхемы (UVAC). Контроль выполняется путем анализа напряжения на вторичных обмотках силового трансформатора, т.к. амплитуда напряжений на вторичных обмотках трансформатора прямопропорциональна величине тока его первичной обмотки. Импульсы вторичной обмотки силового трансформатора выпрямляются и через делитель R16, R17 подаются на микросхему SG6105. Конденсатор С23 обеспечивает фильтрацию импульсов. Сигнал UVAC сравнивается внутренним компаратором микросхемы с опорным напряжением 0.7В. Если напряжение UVAC становится ниже 0.7В в течение примерно 200 мкс, то сигнал PG переводится в низкий уровень.

 

Рис. 2. Корректор коэффициента мощности источника питания.

 

Рис. 3.


Лицензия