Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Ремонт ПК

Стр. 34 из 59      1<< 31 32 33 34 35 36 37>> 59

Методы диагностики и ремонта системных плат ПК, плат форматеров, контроллеров механизмов принтеров и МФУ.

Статья добавлена: 04.04.2017 Категория: Ремонт ПК

Методы диагностики и ремонта системных плат ПК, плат форматеров, контроллеров механизмов принтеров и МФУ. Действия при поиске неисправности. Действия при поиске неисправности сводятся к получению диагностической информации, ее анализу и планированию последующих действий, результатом которых является получение дополнительной диагностической информации. Используя эту информацию можно уточнить и скорректировать план следующего этапа работы. Последовательность этих действий должна вести к сужению области, в которой ведется поиск, и, в конечном счете, к обнаружению дефекта. Такой алгоритм действий позволяет на каждом витке поиска за счет анализа получать ответ на вопрос: а что делать дальше? И непрерывно, целенаправленно вести поиск до желаемого результата. Например, перед нами на рабочем столе находится исследуемая системная плата ПК, и нам предстоит провести работу по поиску и устранению дефекта платы. Выделим основные этапы, позволяющие эффективно провести диагностику платы и локализовать причину неисправности.

Примеры реакций программ POST (Power-On-Self-Test) на дефекты в ПК (ликбез).

Статья добавлена: 30.03.2017 Категория: Ремонт ПК

Примеры реакций программ POST (Power-On-Self-Test) на дефекты в ПК (ликбез). В режиме исполнения программы начального самотестирования выполняется проверка процессора, памяти и системных средств ввода/вывода, а также конфигурирование всех программно-управляемых аппаратных средств системной платы. После успешного завершения тестирования и конфигурирования (включающего настройку устройств РnР), POST выдает на экран монитора состав оборудования компьютера и передает управление программе начальной загрузки операционной системы. В случае если обнаружена ошибка конфигурации системной памяти, в порт 80h выводится последовательно в бесконечном цикле код DEh, код DFh, код ошибки конфигурации, который может принимать, например, следующие значения: 00 Оперативная память не обнаружена; 01 Установлены модули DIMM различных типов; 02 Чтение содержимого SPD закончилась неудачей; 03 Модуль не соответствует требованиям для работы на заданной частоте; 04 Модуль не может быть использован в данной системе; 05 Информация в SPD не позволяет использовать установленные модули; 06 Обнаружена ошибка в младшей странице памяти. При обнаружении ошибок POST выдает диагностические сообщения в виде последовательности коротких и длинных звуковых сигналов, а после успешной инициализации графического адаптера - в виде коротких текстовых сообщений об ошибках на экран монитора. Возможны четыре варианта реакции POST на наличие дефекта в системной плате: - программа "зависает", не определяет дефект платы и не выдает сообщений. В этом случае для получения следующей порции диагностической информации необходимо использование осциллографа; - программа определяет наличие дефекта и циклически выдает звуковой код диагностического сообщения в виде последовательности коротких и длинных звуковых сигналов. Например, 1 короткий звуковой сигнал означает: "Нормальное завершение процедуры POST - система функционирует нормально", а если вырабатывается 1 длинный и 1 короткий сигнал, то: "Ошибка системной платы" (кодировка звуковых сигналов зависит от версии POST и фирмы - изготовителя). В этом случае для получения следующей порции диагностической информации необходимо использование осциллографа или специальной диагностической платы; - при использовании специальной диагностической платы, программа POST определяет наличие дефекта и, при прохождении каждой секции POST, записывает код секции (ее номер) в диагностический регистр (обычно порт 80h). Например, код секции POST с номером 0Eh означает: "Тест видеопамяти, подготовка экрана монитора для вывода POST-сообщений". Регистр с адресом 80h физически располагается на специальной диагностической плате, устанавливаемой в слот системной шины. Плата содержит 8-битный регистр со световой (двоичной или шестнадцатиричной) индикацией состояния бит. В пространстве ввода/вывода регистр занимает один адрес, зависящий от архитектуры PC (точнее, версии BIOS). По индикаторам платы можно определить, на какой секции остановился POST, и определить причину неисправности. Однако для использования такой диагностики необходима, во-первых, сама плата-индикатор, и, во-вторых, «словарь» неисправностей - таблица, специфическая для данной версии BIOS и системной платы; - программа определяет наличие дефекта, выдает текстовое сообщение об ошибке и рекомендует выполнить конкретные действия для осуществления выхода из данного устойчивого состояния. Например, после успешной инициализации графического адаптера краткие текстовые сообщения выводятся на экран монитора: CMOS RAM ERROR, CHECK BATTERY/RUN SETUP (Ошибка CMOS, проверить батарею или выполнить SETUP). По POST-сообщению можно предпринять следующие простые действия:

Введение в процесс диагностики и ремонта ПК.

Статья добавлена: 29.03.2017 Категория: Ремонт ПК

Введение в процесс диагностики и ремонта ПК. Поиск неисправности предполагает, что специалисту известно как правильно функционирует устройство, узел, схема. Исследуя неисправное устройство должен увидить отличия от правильного процесса работы устройства, которые и являются проявлением неисправности.Cледует подчеркнуть, что важен не только факт отражающий проявление неисправности, но и на каком этапе работы программ или аппаратуры процессора (устройства) он появился. Поэтому поиск неисправности и получение диагностической информации должны вестись поэтапно с фиксацией информации на каждом этапе, иначе придется многократно выполнять одни и те же действия, а анализ, проведенный без учета фактора времени, будет неверен. Бессмысленно проводить анализ, если вся доступная информация о проявлении неисправности еще не собрана и не зафиксирована. Тем более опасно и рискованно проводить ремонтно-восстановительные работы (пропайка выводов микросхем и радиоэлементов, замена блоков, микросхем и радиоэлементов и т.п.). При поспешных действиях можно заменить исправный элемент на исправный, а возможно и на дефектный, а также установить исправный блок в разъем, который имеет некорректные уровни напряжений электропитания, и испортить его. Пайка сверхминиатюрных компонентов и контактов - это всегда риск, даже при использовании специального (паяльная станция) оборудования, которое при соблюдении соответствующих технологий сводит риск к минимуму. Поэтому пайку нужно производить на заключительных этапах ремонта после принятия хорошо обоснованного решения на основе достоверной информации. Необходимым условием для нормальной работы устройства является наличие номинальных напряжений электропитания . На системной плате часть устройств используют стандартные напряжения от блока питания, а часть устройств используют нестандартные напряжения от регулируемых источников электропитания. На плате также используется батарейка напряжением 3 вольта, которая питает устройство CMOS-памяти, генератор, "будильник" и часы реального времени. Соответственно можно предположить, что отказ одного из устройств по цепи питания одного из номиналов напряжений, скажется и на работе других устройств. Это означает, что контакт разъема питания есть точка измерения общего входного сопротивления для группы устройств данного номинала электропитания. Измерив входное сопротивление в этой точке и сравнив его с известным нормальным значением (обычно порядка несколько сотен Ом), можно определить отказ без подключения системной платы к источнику питания, который обусловлен тем, что одно из устройств потребляет недопустимый ток.

Ожидаем PCI Express 4.0.

Статья добавлена: 28.03.2017 Категория: Ремонт ПК

Ожидаем PCI Express 4.0. Организация PCI SIG анонсировала стандарт компьютерной шины PCI Express (PCIe) 4.0, который обеспечит рекордную пропускную способность 16 гигатрансферов в секунду на одну линию, что вдвое превышает предельную скорость шины PCIe 3.0 (16 GT/s соответствует скорости примерно 2 ГБ/с на одну линию x1, то есть например, видеокарта в слоте x16 сможет передавать по шине PCIe 4.0 поток до 32 ГБ/с, вероятно, такой скорости хватит периферийным устройствам на ближайшее десятилетие). Может быть, жёстким дискам и твердотельным накопителям такая пропускная способность в ближайшем будущем не потребуется, так что придётся в очередной раз возложить надежды на игры как двигатель компьютерного прогресса. Предварительный технический анализ показал, что производство PCIe 4.0 будет возможно на текущем оборудовании с существующими материалами и не потребует внедрения нового техпроцесса, а сами устройства сохранят примерно тот же уровень энергопотребления, что и PCIe 3.0. Устройства и разъёмы PCIe 4.0 будут обратно совместимы с предыдущими версиями шины. Разработка PCI Express 4.0 ведется с прицелом на использование в планшетах. Интерфейс PCI Express широко используется в ПК, но пока производители приступили к практическому использованию PCIe 3.0. Встроенная поддержка этой версии, разработка которой была завершена еще в 2010 году, появилась в процессорах Intel Ivy Bridge для настольных и мобильных ПК в 2012 году. Новая версия стандарта создается с учетом применения PCIe 4.0 в планшетах. Высокая скорость будет востребована в связи с ориентацией планшетов на видео высокой четкости и игры - задачи, связанные с пересылкой больших объемов информации. С учетом применения PCIe 4.0 в планшетах, разработчики уделяют повышенное внимание снижению энергопотребления за счет уменьшения линий передачи данных и сокращения аппаратных средств, а это заодно позволит уменьшить себестоимость планшетов. Новые спецификации потребуют достаточно мощных чипов, которые смогут поддерживаться связь на расстоянии в 10-12 дюймов. Сегодня максимальное расстояние между компонентами, соединенными PCI Express, составляет 20 дюймов, но для реализации такого решения требуется дополнительный ретранслятор. В четвертой версии планируется увеличить среднюю дальность действия, но избавиться от ретрансляторов, что должно снизить потребление энергии и уменьшить ресурсоемкость технологии. Шина PCIe 4.0 будет использоваться также и в ПК, серверах и в встраиваемых системах. Более того, сначала она появится именно здесь, а уже потом - и в планшетах. Граница между планшетами и ноутбуками может существенно размыться. Помимо применения новой шины для внутренних соединений, PCI-SIG рассматривает создание варианта интерфейса для связи смартфонов и планшетов с периферийными устройствами.

Причины неработоспособности флеш-диска.

Статья добавлена: 27.03.2017 Категория: Ремонт ПК

Причины неработоспособности флеш-диска. В настоящее время флеш-диски приобрели огромную популярность и, по существу, являются универсальным средством хранения и переноса цифровой информации. Ими снабжаются мобильные телефоны, плееры, DVD проигрыватели, фотоаппараты и многие другие устройства хранения информации. Преимуществом флэш-накопителей по отношению к другим мобильным устройствам хранения информации являются: - большой объём; - высокое быстродействие; - компактность; - отсутствие подвижных механический деталей; - малое энергопотребление и простота эксплуатации; - красивый дизайн; - совместимость с распространенными операционными системами - Windows, MacOS, Linux. Несмотря на все вышеперечисленные достоинства флэш-диски имеют существенный недостаток - низкая надёжность в эксплуатации. Это значит, что при эксплуатации устройств этого типа необходимо быть готовым к тому, что информация, хранящаяся на диске, может быть утеряна по причине отказа работы самого диска, т.е. выхода его из строя. Причин неработоспособности флеш-диска может быть много, но основные из них это: - потеря логической структуры диска; - механические неисправности; - выход из строя электроники, неисправности по питанию; - неработоспособность контроллера управления памятью; - выход из строя флэш-памяти (NAND).

Магниторезистивные головки (MR , GMR).

Статья добавлена: 24.03.2017 Категория: Ремонт ПК

Магниторезистивные головки (MR , GMR). В современных устройствах внешней памяти на жестких магнитных дисках большой емкости запись осуществляется сверхминиатюрными магнитными головками (с зазором), выполненными по микронной полупроводниковой технологии. Такие головки позволяют намагничивать предельно малые домены магнитной поверхности, но запись выполняется за счет энергии тока записи достаточной для этого мощности, а вот при считывании, очень слабые поля доменов, при прохождении под зазором головки дают очень слабый электрический сигнал в обмотке считывания. Поэтому в магнитной записи при повышении плотности записи возникает серьезная проблема - при уменьшении размеров магнитных доменов носителя уменьшается уровень считанного сигнала головки и существует вероятность принять шум за "полезный" сигнал. Для решения этой проблемы необходимо иметь более эффективную головку чтения, которая более достоверно сможет определить наличие сигнала от "слабых" полей доменов. Известно, что от воздействия на некоторые материалы внешнего магнитного поля его сопротивление изменяется. Этот эффект был использован для создания считывающих головок нового поколения. Магниторезистивные (Magne-to-Resistive - MR) головки являются чувствительными детекторами и регистрируют малейшие изменения в зонах намагниченности, преобразуя их в электрические сигналы, которые могут быть интерпретированы как данные. При прохождении обычной головки над зоной смены знака, на выходах обмотки считывания формируется импульс напряжения, а при считывании данных с помощью магниторезистивной головки - ее сопротивление оказывается различным при прохождении над участками с разным значением остаточной (постоянной) намагниченности. Это явление и послужило основой для создания фирмой IBM нового типа считывающих головок. Через головку протекает небольшой постоянный измерительный ток (рис. 1), и при изменении сопротивления изменяется и падение напряжения на ней.

Интерфейс SAS: основные характеристики и преимущества.

Статья добавлена: 23.03.2017 Категория: Ремонт ПК

Интерфейс SAS: основные характеристики и преимущества. Достоинства интерфейса SATA - производительность и относительно невысокая стоимость устройств, часто противопоставляют функциональным возможностям параллельного интерфейса SCSI. Чтобы совместить эти характеристики, разработчики создали последовательный интерфейс, призванный заменить шину SCSI. Итогом этой работы стало появление на рынке нового интерфейса, получившего название Serial Attached SCSI (SAS). Сочетание надежности и функциональности, характерных для SCSI, с производительностью, обеспечиваемой последовательными интерфейсами, делает SAS оптимальным выбором при создании устройств, максимально удовлетворяющих требованиям современных серверов и систем хранения данных любого уровня. Пропускная способность первого поколения SAS составляла 3 Гбит/с. В дальнейшем производительность шины планировалось увеличить до 12 Гбит/с, что в полной мере соответствует темпам развития ИТ-индустрии. Характерное для SAS полнодуплексное соединение "точка-точка" обеспечивает одновременное функционирование нескольких устройств, как инициирующих обмен данными ("инициаторы"), так и реализующих этот процесс ("исполнители"). Устройства могут передавать информацию сразу в двух направлениях, что позволяет более эффективно использовать пропускную способность шины. Кроме того, широкие порты (рис. 1), применяемые в SAS, делают возможным объединение до восьми SAS- или SATA-каналов, благодаря чему скорость передачи данных может быть увеличена до 24 Гбит/с.

Cетевые адаптеры.

Статья добавлена: 22.03.2017 Категория: Ремонт ПК

Cетевые адаптеры. Сетевой адаптер - это основной компонент локальной сети. Минимальный набор аппаратуры, которой надо оснастить компьютеры для объединения их в сеть, включает в себя адаптеры (как минимум по одному на каждый компьютер) и соединительные кабели с соответствующими разъемами и оконечными согласователями. Остальное оборудование сети служит для улучшения ее характеристик, а также для повышения удобства ее использования. Cетевые адаптеры обеспечивают сопряжение компьютера и среды передачи информации с учетом принятого в данной сети протокола обмена информацией. Адаптер должен выполнять ряд функций, количество и суть которых во многом зависят от типа конкретной сети. Все функции сетевого адаптера можно разделить на две большие группы. Первая группа включает в себя функции сопряжения адаптера с компьютером (магистральные функции), а вторая - функции по организации обмена в сети (сетевые функции). Функции первой группы определяются интерфейсом компьютера, к которому подключается сетевой адаптер, и не отличаются большим разнообразием. Функции второй группы определяются типом сети и могут быть самыми различными в зависимости от типа сетевого кабеля, принятого протокола управления, топологии сети и т.д. Магистральные (канальные, шинные) функции сетевых адаптеров обеспечивают организацию их сопряжения с одной из локальных шин системного интерфейса персонального компьютера. Для процессора сетевой адаптер это обычный контроллер, соответствующий определенным стандартам, в котором имеется ряд программно-доступных регистров, каждый из которых имеет свое функциональное назначение. Процессор управляет любым контроллером через его программно-доступные регистры, записывая и читая информацию с помощью команд IN, OUT, INS, OUTS. Сетевой адаптер, как любой другой контроллер имеет свой набор команд. Получив от процессора, выполняющего программу сетевого взаимодействия, команду (через программно-доступный регистр или регистры), контроллер отрабатывает команду автономно, реализуя, в том числе, функции обмена по сетевому кабелю с другим сетевым адаптером или несколькими сетевыми адаптерами. Команда может вызвать в сетевом адаптере выполнение очень сложных преобразований информации по программам, выполняемым специализированным процессором, встроенным в плату сетевого адаптера. Кроме того, контроллер может выполнять ряд вспомогательных аппаратных функций инициируемых аппаратными сигналами или записью управляющей информации в его программно-доступный регистр, формировать сигнал запроса на обслуживание (прерывание). Некоторые сетевые адаптеры имеют в своем составе аппаратуру, позволяющую ему выполнять функции устройства, инициирующего операцию обмена на интерфейсе (Master). Сопряжение с компьютером возможно не только через системную магистраль, но и через внешние интерфейсы, например, через интерфейс USB, но низкая скорость передачи информации по таким интерфейсам не позволит организовать эффективную работу сетевых адаптеров, для которых очень важна скорость обмена. Данные передаются из памяти компьютера в адаптер или из адаптера в память с помощью прямого доступа к памяти, или совместно используемой области памяти или программируемого ввода-вывода. К сетевым функциям адаптеров, относят функции, которые обеспечивают реализацию принятого в сети протокола обмена. Часть этих функций может выполняться как аппаратурой адаптера, так и программным обеспечением персонального компьютера (перенос части функций на программные средства позволяет упростить аппаратуру адаптера и существенно увеличить гибкость обмена, но ценой замедления работы). К основным сетевым функциям адаптера, относятся нижеследующие функции:

Решение проблем с питанием, запуском компьютера и аккумулятором.

Статья добавлена: 21.03.2017 Категория: Ремонт ПК

Решение проблем с питанием, запуском компьютера и аккумулятором. 1) Планшет не включается • проверьте заряд аккумулятора, в случае разрядки присоедините адаптер питания и подождите не менее 5-ти минут; • нажмите и удерживайте кнопку включения устройства не менее 5 сек; • в том случае, если аккумулятор заряжен, всё равно подключите адаптер питания и повторите процедуру повторно; • если устройство не включается даже после подзарядки, обратитесь в службу поддержки или авторизованный сервисный центр. 2) Компьютер отключается сразу после включения • возможно, у устройства чрезвычайно низкий заряд аккумулятора. В этом случае система автоматически предотвращает полную разрядку во избежание потери информации и хранящихся данных. Перед тем, как осуществить повторную попытку включения устройства, заряжайте его не менее 5-ти минут и не отсоединяйте адаптер питания от розетки во время работы.

Инфракрасный интерфейс.

Статья добавлена: 20.02.2019 Категория: Ремонт ПК

Инфракрасный интерфейс. Устройство инфракрасного интерфейса (рис. 1) подразделяется на два основных блока: преобразователь (модули приемника-детектора и диода с управляющей электроникой) и кодер-декодер. Блоки обмениваются данными по электрическому интерфейсу, в котором они в том же виде транслируются через оптическое соединение, за исключением того, что здесь информация пакуется в кадры простого формата – данные передаются 10-битными символами, с 8 битами данных, одним старт-битом в начале и одним стоп-битом в конце кадра. Сам порт IrDA (рис. 2) основан на архитектуре коммуникационного СОМ-порта PC, который использует универсальный асинхронный приемо-передатчик UART (Universal Asynchronous Receiver Transmitter) и работает со скоростью передачи данных 2400–115200 bps. ИК-портом оснащены практически все современные портативные РС, иногда окно ИК-передатчика можно встретить и на корпусе настольного компьютера. Для реализации инфракрасного интерфейса (кроме, естественно, самой схемы UART, которая реализует COM-порт), нужна микросхема приемопередатчика, например, серии CS8130. Этот прибор является интерфейсом между блоком UART, излучающим светодиодом и светочувствительным PIN-диодом. Он работает в форматах IrDA, ASK и TV-формате беспроводного управления, имеет функции программирования мощности передачи и порога срабатывания приемника. Микросхема выполнена в корпусе типа SSOP очень малого размера (5х7 mm). Многие разработчики использовали микросхему MCS7705, которая представляет собой аппаратный преобразователь USB – IrDA.

Адаптивы жестких дисков.

Статья добавлена: 16.03.2017 Категория: Ремонт ПК

Адаптивы жестких дисков. Аппаратно-программные комплексы для восстановления жестких дисков не всемогущи. Например, ни один из них не способен восстанавливать адаптивы, которые начали доминировать сравнительно недавно. До этого индивидуальные настройки диска сводились к высокоуровневым наслоениям, никак не препятствующим чтению информации на физическом уровне. Перестановка платы, взятой у «донора» могла привести к невозможности работы с диском средствами операционной системы, но данные всегда было можно прочитать по-секторно стандартными командами или, на худой конец, на уровне физических адресов в технологическом режиме. Но плотность информации неуклонно росла, нормативы допусков ужесточались, а это значит, что усложнялся и удорожался производственный цикл. В промышленных условиях невозможно изготовить два абсолютно одинаковых жестких диска. Справиться с неоднородностью магнитного покрытия, влекущего за собой непостоянство параметров сигнала головки в зависимости от угла поворота позиционера, чрезвычайно сложно, поэтому, производители должны были выбрать один из перечисленных ниже путей: 1. Уменьшить плотность информации до той степени, при которой рассогласованиями можно пренебречь. Однако в этом случае для достижения той же емкости придется устанавливать в диск больше пластин, что удорожает конструкцию и вызывает новые проблемы. 2. Улучшить качество производства. Это хороший вариант, но при современном уровне развития науки, технологий и экономики он настолько нереален, что даже не обсуждается. 3. Индивидуально калибровать каждый жесткий диск, записывая на него так называемые адаптивные настройки. Именно этот вариант и был выбран производителями, что и привело к появлению адаптивов. Состав и формат адаптивов меняется от модели к модели. Обычно (в грубом приближении), в состав адаптивов входят: ток записи, усиление канала, профиль эквалайзера, напряжение смещения для каждой головки, таблица коррекции параметров каждой головки для каждой зоны и т. д., и т. п. Без своих "родных" адаптивов жесткий диск просто не будет работать. Даже если произойдет чудо, и "чужие" адаптивы все-таки подойдут (а это маловероятно - чудес, как известно, не бывает), то информация будет считываться крайне медленно и с большим количеством ошибок. Подобрать адаптивы нереально, рассчитать их в "домашних" условиях — тоже. Как же формируются эти адаптивы? Чисто теоретически для заполнения таблицы адаптивов не нужно ничего, кроме самого винчестера (некоторые модели жестких дисков даже содержат в прошивке специальную программу Self Scan, как раз и предназначенную для этих целей, она и рассчитывает адаптивы (но при этом уничтожает всю содержащуюся на жестком диске информацию, что делает ее непригодной для целей восстановления данных). Адаптивы могут храниться как на самом диске в служебной зоне (и тогда смена электронных донорских плат проходит успешно, но не работает hot-swap), либо в микросхеме FLASH-ROM, которую перед заменой плат следует перепаять. Диски без адаптивов встречаются очень редко (можно сказать, что сейчас практически вообще не встречаются). В связи с этими возникшими проблемами «донорство» при восстановлении информации во многих случаях стало проблемным.

Пользовательская модель PCI Express Hot-Plug (горячее подключение). Индикаторы.

Статья добавлена: 15.03.2017 Категория: Ремонт ПК

Пользовательская модель PCI Express Hot-Plug (горячее подключение). Индикаторы. Стандартная пользовательская модель, как следует из названия, в первую очередь нацелена на пользователей, которые эксплуатируют системы со слотами Hot-Plug. Стандартная пользовательская модель определяет два индикатора: индикатор питания и индикатор внимания. Платформа может обеспечить два индикатора в каждый слот или панель модуля, индикаторы могут быть реализованы на корпусе или модуле, детали реализации зависят от требований форм-фактора "горячего" подключения. Каждый индикатор находится в одном из трех состояний: - включено, - выключено, - мерцание. Системное ПО Hot-Plug обладает исключительным контролем над состоянием индикаторов за счет возможности записи в командный регистр, связанный с индикатором. Порт совместимый с Hot-Plug управляет частотой мерцания индикаторов, рабочим циклом и фазой. Мерцающие индикаторы функционируют на частоте от 1 до 2 Гц с коэффициентом заполнения 50% (± 5%). Мерцающие индикаторы не должны быть синхронизированы и синфазны между портами. Индикаторы должны находиться в непосредственной близости от связанного с ними слота Hot-Plug, если индикаторы реализованы на корпусе, чтобы соединение между индикаторами и слотом Hot-Plug было как можно более свободным. Оба индикатора полностью контролируются системным ПО. Устройство коммутатора или корневого порта никогда не изменяет состояние индикатора при отклике на событие, типа сбоя питания или внезапного открытия защелки MRL, если только системное ПО специально не пошлет такую команду. Исключение предоставляется платформам, которые совместимы с механизмом определения контактной неисправности (типа "залипания") питания. В этом специфическом случае сбоя платформе разрешено "подавить" устройство коммутатора или корневого порта и силой включить индикатор питания (как указание, что плата расширения не может быть извлечена). Во всех случаях внутреннее состояние порта для индикатора питания должно соответствовать состоянию, выбранному программным обеспечением. Обработка системным ПО константных неисправностей является необязательной функциональностью и отдельно не описывается. Поэтому производитель платформы должен гарантировать, что эта дополнительная функциональность стандартной пользовательской модели выполняется дополнительным ПО, описывается в документации платформы или каким-либо другим способом.

Стр. 34 из 59      1<< 31 32 33 34 35 36 37>> 59

Лицензия