Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Эффективные внутренние и внешние соединения для компьютеров следующего поколения. Волоконно-оптические технологии.

Эффективные внутренние и внешние соединения для компьютеров следующего поколения. Волоконно-оптические технологии.

Переход на оптику был запланирован на 2019 год. Еще в 2006 году исследователи корпорации Intel представили уникальное устройство – первый в мире гибридный кремниевый лазер, работающий на базе обычного электрического напряжения, для изготовления которого использовались стандартные производственные процессы. Это делает возможным создание недорогих устройств на основе кремниевой фотоники, обладающих высокой пропускной способностью. Такие компоненты обеспечат эффективные внутренние и внешние соединения при разработке компьютеров следующего поколения.

Ученым удалось объединить светоизлучающие способности фосфида индия со свойством кремния проводить свет и создать единый гибридный кристалл. При приложении напряжения свет генерируется элементами из фосфида индия и передается по кремниевому световоду, образуя непрерывный лазерный луч. Эта технология позволяет значительно снизить себестоимость за счет использования стандартных производственных процессов, применяемых в современной полупроводниковой индустрии.

Появилась возможность создавать недорогие оптические шины с терабитовой пропускной способностью. Всего на одной кремниевой микросхеме можно будет разместить десятки, и даже сотни, гибридных кремниевых лазеров, а также других компонентов на базе кремниевой фотоники, что будет способствовать крупномасштабному проникновению оптических технологий в кремниевые платформы. Наступает эра микросхем на базе кремниевой фотоники с высокой степенью интеграции. В настоящее время исследования направлены на создание оптоэлектронных устройств с пропускной способностью на уровне 160 Гбит/с.

Главным новшеством в предложенной конструкции гибридного кремниевого лазера является применение материала на основе фосфида индия для излучения и усиления света, кремниевого световода, для передачи света, а также управления лазером. При изготовлении таких устройств используется низкотемпературная кислородная плазма для создания тонкой пленки окиси (толщиной около 25 атомов) на поверхностях обоих материалов. Если их нагреть и прижать друг к другу, слой окиси выполняет функции «прозрачного клея», обеспечивая сплавление этих материалов в единую систему. В момент приложения напряжения свет, излучаемый материалом на основе фосфида индия, проходит через слой окиси и попадает в кремниевый световод. Конструкция последнего имеет весьма существенное значение для обеспечения прозрачности для длины волны такого лазера. Гибридный лазер преодолел последний барьер на пути массового внедрения оптоэлектронных устройств на базе кремния. Гибридный лазер был интегрирован с подложкой чипа и стал массовым устройством еще в  2011 году.

Над решением подобных проблем активно работают исследователи ведущих производителей чипов, и одной из первых компаний, о получении реального результата сообщила японская корпорация NEC, которая разработала новую технологию оптического межсоединения. Компания разработала базовую технологию, обеспечивающую возможность оптического соединения элементов LSI-чипа. Технология предполагает использование микрофотодиода, изготовленного на кремниевой подложке, миниатюрной усилительной схемы, оптического модулятора, волноводов и других элементов. Основной составной частью схемы является именно микрофотодиод, который обеспечивает чрезвычайно высокую реакцию на импульсы на частоте свыше 50 ГГц, и работает при напряжении смещения от 0 до +1 В. Усилительная схема имеет размеры всего несколько квадратных микрометров, что в тысячи раз меньше, нежели усилители напряжения, которых они призваны заменить. Подобное решение позволит разработчикам создавать более производительные чипы, увеличивая количество вычислительных ядер.

Совсем недавно разработчиками компонентов оптических систем был  предложен для использования в перспективных моделях компьютеров новый способ организации оптической передачи данных между чипами. В чипы встраивается миниатюрный инфракрасный лазер, работающий на основе коллоидных квантовых точек, наночастицы генерируют инфракрасный световой сигнал, который передает информацию по оптоволоконному каналу. Процесс создания такого лазера занимает всего несколько минут: частицы полупроводника, нанометрового размера, взвешенные в растворителе, наносят тонким слоем на кремниевую подложку как краску, специальная миниатюрная стеклянная палочка окунается в раствор и высушивается горячим воздухом. Если на трубочку подать напряжение, то лазер начинает излучать. Оптическая передача данных основана на лучах лазера с длинной волны 1,5 микрона. Специально для генерации такого излучения подобран размер наночастиц. Применяя инфракрасную передачу данных внутри компьютера можно увеличить скорость работы системы, не увеличивая число транзисторов на микропроцессоре. Так как от оптических линий связи нет помех, то можно организовать многоканальную связь для подключения большого числа компонентов компьютера.


Лицензия