Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Многокристальная компоновка процессоров AMD.

Многокристальная компоновка процессоров AMD.

Процессоры AMD уходят от использования монолитного полупроводникового кристалла. Ядра в них распределены по нескольким полупроводниковым кристаллам – чиплетам, также в отдельный чиплет будут вынесены и все контроллеры ввода-вывода. Новые CPU имеют конструктивное исполнение AM4 (рис. 1) и поддерживаются как материнскими платами с набором логики X570, так и с выпущенными ранее изделиями (при условии обновления прошивки UEFI).

Выигрыш, который даёт использование многокристальной компоновки, вполне очевиден. В первую очередь она позволяет снизить себестоимость. Производство чиплетов, имеющих сравнительно небольшую площадь кристалла, заметно проще, чем изготовление крупного монолитного процессора. Меньшие кристаллы не только позволяют получить более высокий выход годных чипов, но и эффективнее размещаются на круглой полупроводниковой подложке, что дополнительно снижает количество отходов. Именно чиплетная компоновка позволила AMD создать весьма сложные процессоры Ryzen 3000 сравнительно недорогими, даже несмотря на то, что их выпуск организован на мощностях TSMC по самому передовому и новому для индустрии техпроцессу с нормами 7 нм.

Конструкция процессоров Ryzen 3000 заметно отличается от того, как были устроены все прошлые Ryzen. Но базовый процессорный строительный блок — четырёхъядерный комплекс CCX (Core Complex) - тем не менее ровно так же, как и раньше CCX-комплексы собираются из ядер Zen 2. В один блок CCX объединяется 4 ядра и 16 Мбайт общей кеш-памяти третьего уровня.

 

Рис. 1

Пара CCX располагается на одном 7-нм полупроводниковом кристалле и формирует процессорный чиплет, получивший аббревиатуру CCD (Core Complex Die). Помимо ядер и кеша, в CCD-чиплет входит также контроллер шины Infinity Fabric, посредством которого должно обеспечиваться соединение CCD с обязательным для любого Ryzen 3000 чиплетом ввода-вывода.

В чиплете ввода-вывода (I/O) процессоров поколения Zen2 располагаются так называемые внеядерные компоненты, а также элементы северного моста и SoC. В нём, помимо всего прочего, находятся контроллер памяти и контроллер шины PCI Express 4.0. Также в I/O-чиплете реализованы и две шины Infinity Fabric, необходимые для соединения с CCD-чиплетами.

В зависимости от того, о каком процессоре семейства Ryzen 3000 идёт речь, он может состоять либо из двух, либо из трёх чиплетов (рис. 1). В процессорах с числом ядер восемь и менее применяется один CCD-чиплет и один I/O-чиплет. В процессорах с числом ядер более восьми CCD-чиплетов становится уже два. Однако нужно понимать, что процессор при этом всё равно остаётся единым целым. За счёт того, что в любых Ryzen 3000 контроллер памяти находится в I/O-чиплете и он всего один, любое из ядер может гладко обращаться к любым её областям: никаких NUMA-конфигураций, которые портили жизнь владельцам процессоров Threadripper, в случае Zen 2 не будет.

Стоит напомнить, что Zen 2 – далеко не первая попытка перейти на многокристальную компоновку процессоров. Раньше производители уже прибегали к такому подходу. Но впоследствии производители всё же перешли на монолитную конструкцию процессоров, так как она оказалась более эффективной при росте числа ядер и переносе в процессор компонентов северного моста. Однако новые Ryzen 3000, в состав которых входит два или три чиплета, – отнюдь не шаг назад. Напротив, это переход на следующий уровень, поскольку AMD в новом поколении процессоров идёт не простым экстенсивным методом, наращивая количество вычислительных ядер за счёт добавления дополнительных кристаллов, а применяет куда более интеллектуальный подход, вводя в обиход чиплеты с различной функциональностью и объединяя их в единое целое специализированной высокоскоростной шиной Infinity Fabric.

Производство чиплетов, имеющих сравнительно небольшую площадь кристалла, заметно проще, чем изготовление крупного монолитного процессора и позволяет снизить себестоимость. Чиплетная компоновка позволила AMD создать весьма сложные процессоры Ryzen 3000 сравнительно недорогими, даже несмотря на то, что их выпуск организован по самому передовому и новому для индустрии техпроцессу с нормами 7 нм.

Распределение функций процессора по различным чиплетам позволило AMD сэкономить и ещё в одном аспекте. Новый техпроцесс оказалось совсем необязательно применять при производстве всех частей процессоров. «Тонкие» передовые нормы важны для процессорных ядер, поскольку они прямо влияют на частотный потенциал и энергопотребление, но нет никакой нужды использовать их для изготовления более простого чиплета, отвечающего за функции ввода-вывода. Именно поэтому I/O-чиплет в Ryzen 3000 производится по-старинке – на фабриках GlobalFoundries по 12-нм техпроцессу, который использовался при изготовлении процессоров Ryzen второго поколения.

Впрочем, нужно иметь в виду, что чиплетная конструкция порождает и определённые трудности. Например, в современных процессорах очень высокие требования предъявляются к тому, как соединяются и взаимодействуют друг с другом различные части CPU. Реализовать такую шину при многочиповой компоновке оказывается несколько сложнее. Впрочем, эта задача была успешно решена инженерами AMD. Процессоры Ryzen первого и второго поколений, хотя они и были основаны на монолитном ядре, использовали для соединения CCX и контроллера памяти, северного моста и элементов SoC специализированную шину Infinity Fabric. В новых процессорах Ryzen 3000 применяется вторая версия этой шины: именно она отвечает за передачу данных между всеми чиплетами.

К тому, как работает Infinity Fabric, ранее высказывались вполне обоснованные претензии так как она не всегда могла обеспечить должный уровень быстродействия при взаимодействии процессорных ядер с L3-кешем и с контроллером памяти. В процессорах Ryzen 3000 компания AMD постаралась исправить основные недостатки Infinity Fabric.

Во-первых, эта шина была расширена вдвое: теперь её ширина составляет 512 бит, что означает двукратное увеличение пропускной способности и возможность пересылки по 32 байта за такт в каждом направлении. На этот шаг разработчики пошли в первую очередь из-за появления в Ryzen 3000 поддержки PCI Express 4.0, но эта более производительная шина, которая связывает все ключевые компоненты процессора, сыграет положительную роль и во многих других случаях.

Во-вторых, Infinity Fabric теперь «развязана» с контроллером памяти по частоте. Раньше частота работы этой шины была синхронизирована с частотой памяти, что, с одной стороны, приводило к сильной зависимости производительности процессоров Ryzen от скорости установленных в системе модулей DDR4 SDRAM, а с другой – препятствовало разгону памяти выше 3466-3600 МГц. Теперь же шина Infinity Fabric сможет работать с контроллером памяти не только синхронно, но и на вдвое меньшей относительно него частоте – с применением делителя 2:1. Это означает гораздо большую свободу в выборе скорости памяти, хотя AMD утверждает, что синхронный режим для Infinity Fabric всё равно будет обеспечивать лучшую производительность, и оптимальнее с Ryzen 3000 использовать модули памяти DDR4-3600 с низкими таймингами (тем не менее уже сейчас известно о том, что память в Socket AM4-системах, оснащённых процессорами Ryzen 3000, действительно можно будет сильно разгонять). Например, AMD показала работу модулей памяти в режиме DDR4-5100 в системе, построенной на Socket AM4-материнской плате MSI MEG X570 Godlike.

Чиплетный дизайн процессоров поставил перед инженерами AMD и ещё одну непростую задачу. Как оказалось, физически собрать два или три кристалла на одной текстолитовой плате с 1331 ножками и размером 40 × 40 мм не так-то просто. Каждый из полупроводниковых кристаллов-чиплетов имеет собственный массив контактов, и правильно развести их соединения у AMD получилось, лишь увеличив количество слоев проводников в процессорной плате до двенадцати. При этом маршрутизация контактных дорожек Ryzen 3000 всё равно выглядит нетривиально и очень запутанно: ранее AMD ещё не приходилось разрабатывать столь сложных процессорных плат.

Безусловно, задача конструирования процессорной платы для чиплетной процессорной компоновки Ryzen 3000 могла бы быть существенно упрощена, если бы AMD отказалась от Socket AM4 в пользу какого-то нового разъёма с большей площадью. Но поскольку компания пообещала пользователям сохранять совместимость массовых CPU с единой экосистемой до 2020 года, было решено пойти на дополнительные разработки и всё же впихнуть два CCD-чиплета и один I/O-чиплет на PGA-плату, устанавливаемую в привычный разъём.

CCD-чиплет с вычислительными ядрами выпускается по 7-нм техпроцессу и имеет очень небольшую площадь, поэтому контакты для монтажа на процессорную плату на нём приходится размещать очень плотно. Расстояние между контактами на кристаллах, с которыми имела дело AMD раньше, составляло как минимум 150 микрон. В кристаллах же Zen2 это расстояние уменьшилось до 130 микрон. И как оказалось, в мире существует лишь два производителя печатных плат, которые способны изготавливать текстолитовые подложки под кристаллы со столь плотной контактной матрицей.

Ради возможности сборки Ryzen 3000 в виде совместимых с Socket AM4-процессоров компании AMD пришлось пойти и ещё на одно ухищрение. Выпускаемые по 7-нм технологии CCD-чиплеты были переведены на другую технологию изготовления контактов для монтажа на процессорной плате. На смену применявшимся ранее шарообразным контактам пришли цилиндрические медные столбики, которые, во-первых, имеют меньший диаметр и допускают более плотное размещение, а во-вторых, позволяют выровнять высоту 7-нм и 12-нм чиплетов для установки на них единой плоской теплорассеивающей крышки.

За выпуск Ryzen 3000 в конечном итоге отвечает четыре подрядчика из четырёх разных стран: I/O-чиплеты изготавливает американская GlobalFoundries, CCD-чиплеты производит тайваньская TSMC, текстолитовые платы для процессоров AMD заказывает в Японии, а финальная сборка процессоров в единое целое происходит в Китае.  

 


Лицензия