Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Пример поиска неисправности в системной плате ПК (MS-7758).

Пример поиска неисправности в системной плате ПК (MS-7758).

Общеизвестен факт, что отрицательное воздействие внешней среды и использование дешевых компонентов при пайке, непосредственно сказывается на показателях надежности печатных узлов и сборок выполненных по современным технологиям. Персональный компьютер, стоящий на обслуживании у грамотного специалиста-мастера, практически никогда не выходит из строя. Мастер знает, как обращаться с сложной компьютерной техникой, и не допускает ситуаций, в которых могут появиться дефекты, но на практике часто возникают ситуации нарушающие нормальное функционирование техники по причинам, которых трудно избежать и при грамотной эксплуатации. Например, современные технологии изготовления печатных плат и безсвинцовые технологии пайки не только экологичны и эффективны, но они (в определенных условиях) порождают ряд явлений, приводящих к отказам электронных схем. Микроскопические проростки металла из мест пайки на печатной плате («усы» олова) — часто являются одной из причиной возникновения отказов современных электронных схем из-за замыканий между контактами и проводниками.

Представленная на ремонт системная плата, по словам ее хозяина «не работает в составе системного блока», но все остальные компоненты компьютера исправны (это было установлено установкой точно такой же материнской платы в системный блок). Поиск неисправности в системной плате (MS-7758) привезенной на ремонт производился по «классической» схеме на стенде имитирующем оборудование ПК. До включения электропитания были проведены измерения и было обнаружено, что напряжение батареи CMOS-памяти чуть ниже нормы, но генератор часов реального времени функционирует нормально, положение джамперов соответствует требованиям установленного оборудования и нормальным режимам работы. Нет видимых повреждений, нет неустановленного оборудования. Было видно, что плата эксплуатировалась в нормальных условиях и заметного ее загрязнения нет.

О возможном замыкании в цепях питания устройств, размещенных на данной системной плате можно судить, анализируя диагностическую информацию, полученную с разъема ATX омметром. Измеряли сопротивление, например, между контактом +5 вольт и "землей" на разъеме электропитания в прямом и обратном измерении (при нормальной «нагрузке» при прямом и обратном измерении видна разница измеренного сопротивления в соотношении примерно 3:2). Данные наших замеров по всем вариантам питания говорили об отсутствии в «нагрузках» короткого замыкания, замеренного через линии питания, но ведь возможны замыкания или обрывы в логических цепях, а это может выясниться только после подаче на плату электропитания. Подключили «хороший» блок питания к разъему ATX системной платы и подали 220 вольт сети переменного тока на блок питания. Нажали кнопку включения питания.

После включения электропитания и анализа состояния системной платы было зафиксировано:

- состояние индикаторов: активен индикатор “Питание” на мониторе;

- механические перемещения и вращения узлов внешних устройств – отсутствуют;

- звуковые эффекты – отсутствуют;

- тепловые эффекты и запахи, вызываемые излишним нагревом, отсутствуют;

- звуковые сообщения программ через динамик - отсутствуют;

- сообщения программ на экране монитора – отсутствуют.

Таким образом, исходное состояния этой системы, полученное после включения электропитания не дало оснований для утверждения, что процессор выполнял, или начинал выполнять какую-либо программу.

Выключили питание системной платы и проверили наличие «дежурного» питания - они оказались в норме.

Нажали кнопку включения питания и провели проверку основных вторичных напряжений. Обнаружили, что вторичные напряжения системного блока питания готовы: VCC3, VCC5, +12V, -12V( Есть сигнал ATX_PWR_OK ).

Проверили схемы и наличие сигналов начального «начального сброса системы» - их нет. Исследование решили начать, естественно с проверки всего вторичного питания, внешних синхроимпульсов и др.). Обнаружили отсутствие ряда напряжений источников расположенных на системной плате (например, источник напряжения PCH_1P05) - причина — постоянно«висит» сигнал SLP_S3# (ну).

Прежде всего, как и положено, с помощью электронного микроскопа произвели тщательный визуальный осмотр микросхем этих источников и их контактов. В результате визуального исследования (с увеличением х55) было обнаружено, что контакты S1, G1 микросхемы U34 ( рис. 1) замкнуты (см. рис. 2), что в дальнейшем было подтверждено и «прозвонкой» с помощью омметра. Причина отказа - «усы» олова.

Высокий уровень сигнала SLP_S3_CTRL# формирует низкий уровень сигнала (0V)PCH_0_6_REF_R (3 конт. U38) , а это выключает источник напряжения PCH_1P05.

 

Рис. 1. Источник напряжения PCH_1P05(один из заблокированных сигналом SLP_S3# ).

Современные технологии изготовления различного вида печатных плат и безсвинцовые технологии пайки не только экологичны и эффективны, но они (в определенных условиях) порождают ряд явлений, приводящих к отказам. «Усы» олова — это микроскопические проростки металла из мест пайки на печатной плате, являются причиной возникновения отказов электронных схем из-за замыканий между контактами и проводниками. Общеизвестен факт, что отрицательное воздействие внешней среды непосредственно сказывается на показателях надежности печатных узлов и сборок выполненных по современным технологиям.

Рис. 2. Микросхема U34 (см. рис. 1).

Достаточно часто, в разговорах со специалистами по ремонту персональных компьютеров, можно услышать: «пропаял контакты микросхем, разъемов неисправной платы и она заработала, неисправность исчезла». Обычно такое «волшебство» пропайки объясняют плохим качеством паяного соединения, но действительно ли это так? Есть и более реальное объяснение. До недавнего времени при пайке использовали свинец и сплавы на его основе, которые имеют низкую температуру плавления, но к сожалению, свинец является токсичным металлом. Из экологических соображений содержащие свинец припои активно вытесняются с рынка постановлениями исполнительной власти ЕС, которые оказывают сильное давление на производителей. Евросоюз принял директиву 2002/95/ЕС RoHS (Restriction of Hazardous Substances – запрет вредных веществ). Согласно этому документу, уже с 1 июля 2006 года начали действовать ограничения на использование в промышленной электронной продукции и в новой электронной технике некоторых химических материалов, опасных для здоровья и окружающей среды. Среди прочих, действие директивы распространяется и на соединения свинца. Таким образом, запрещается использование свинцовосодержащих припоев (рис. 3).

 

Рис. 3. Логотип означающий соответствие технологии пайки требованиям исполнительной власти EC.

При работе с безсвинцовыми припоями возникает ряд проблем, которые связаны с их физическими свойствами. Поэтому паяльные станции должны быть специально адаптированы для работы с новыми припоями.

Перемычки и замыкания возникают в виде «усов» олова (это микроскопические проростки металла из мест пайки на печатной плате). Эти таинственные проростки и были виноваты в серьезнейших отказах электроники.

Олово без укрощающего его свинца ведет себя непредсказуемо. Оловянное покрытие без добавок, как и кадмий и цинк, спонтанно образует кристаллы металла диаметром около 1-5 мкм и менее одной десятой толщины человеческого волоса, которые проталкиваются от основания вверх. Если они растут достаточно близко для того, чтобы прикоснуться к другому токопроводящему объекту, то вызовут короткое замыкание, которое может повредить аппаратуру.

Механизм образования «усов» теперь стал достаточно понятным — это происходит за счет напряжения сжатия, обусловленного, скажем, диффузией меди в олово. При встраивании в слой олова медь пробивается через барьерный слой оксида олова.

Что способствует появлению «усов»? Оказывается, что они могут расти при температуре и влажности окружающей среды или в вакууме, а также при постоянных или изменяющихся температурах (хотя варьирование температуры может способствовать их росту). Кончики «усов» соразмерны атому. За достаточное время они протолкнутся через любое покрытие. Они являются преобладающей причиной (лишь недавно обнаруженной) многих отказов аппаратуры в прошлом. Один «усик» может пропускать около 30 мА — что более чем достаточно для повреждения цифровых схем. Компании, как IBM и National Instruments, уже давно имеют технологии, соответствующие требованиям RoHS, но для многих фирм проблема «усов» пока остается открытой.

Как же избежать дефектов при ручной пайке компонентов, выполненных по бессвинцовой технологии? Все ведущие производители единодушны в том, что большинство Pb-free компонентов полностью совместимы со стандартными технологиями ручной пайки оловянно-свинцовыми припоями. Совместимость с требованиями RoHS, так же как и знак «Pb-free» не означают, что элемент необходимо паять обязательно бессвинцовым припоем. Но в процессе пайки необходимо предотвратить термодиструкцию электронных компонентов (эта неприятность может возникнуть потому, что большинство из «Pb-free» припоев имеют повышенную температуру плавления, которая несовместима с максимальной температурой пайки выбранных компонентов). Специалисты по технологиям пайки и паяльному оборудования утверждают, что если выполнять ряд рекомендаций для ручной пайки, то качество пайки и компоненты электронных схем не пострадают.

При работе с «Pb-free» компонентами, их монтаже-демонтаже, на плате смешанного типа необходимо тщательно очищать посадочные места компонентов, во избежание смешивания припоев «Pb-free» и традиционных, так как несоблюдение этой рекомендации, в случае смешивания припоев образуется «холодная» пайка. Становится более актуальным использование оловоотсосов, оплетки для удаления припоев и пр. Так же, следуя вышеприведенному пункту, следует использовать разные жала для пайки «Pb-free» и свинцовосодержащими припоями. С микросхемами в корпусах BGA работа идет сложнее, но ситуацию «спасают» изделия компании «ERSA» выпускающей модернизированные инфракрасные паяльные центры (например, IR550plus). При работе с припоями «Pb-free» и микросхемами BGA, достоинства таких паяльных центров неоспоримы. Они обладают непревзойденная равномерностью локального инфракрасного нагрева, что обеспечивает точную и безопасную (для чувствительных компонентов) отработку термопрофиля. Паяльные центры обеспечивают возможность визуального мониторинга процесса пайки (дополнительная опция – видеосистема PL550A). Система IR550plus универсальна и самодостаточна, она обеспечивает надежную и безопасную работу со сложнопрофильными компонентами.

 


Лицензия