Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Роль Z-буфера в формировании изображения (ликбез).

Роль Z-буфера в формировании изображения (ликбез).

Z-буферизация - изначально эта технология применялась в системах автоматизированного проектирования. В двумерном мире объекты не могут располагаться впереди или позади друг друга, поэтому нет проблем с перекрытием. Но в трехмерном мире один объект может находиться впереди другого. Обычно световые лучи не проникают через непрозрачные объекты, поэтому мы видим все, что находится впереди, и не видим того, что позади.

Когда два объекта перекрываются, нужно выяснить, какой из них находится впереди, чтобы знать, какие пиксели объекта нужно показать на дисплее. Область, в которой пересекаются две фигуры, можно описать, указав для каждого пиксела фигур величину расстояния от него до условного заднего плана. Если дополнить обычную видеопамять картой этих расстояний для каждого пикселя, то будет всегда известно, нужно ли закрашивать конкретный пиксель: если значение расстояния (или значение Z) у пикселя меньше, значит, он позади и его не нужно закрашивать.

Эту идею можно реализовать аппаратно. Решение, состоит в создании параллельно с памятью дисплея другого массива памяти, называемого Z-буфером. Каждый раз при записи пикселя вычисляется его значение Z. При этом записываются только пиксели с большими значениями Z и обновляются расстояния в Z-буфере. Все остальные пикселы игнорируются. Таким образом, в каждой ячейке Z-буфера хранится расстояние по оси Z (вглубь экрана) для рисуемого пиксела, поэтому легко проверить, затенен ли новый записываемый пиксель или нет. Z-буфер требует дополнительной памяти, и, чем большая точность нужна для значений Z, тем больше памяти нужно для запоминания значений Z. Если используется разрешающая способность 640х400 и значения Z в виде 16-разрядных (двухбайтовых) чисел, то нужно иметь 0,5 мегабайта памяти только для Z-буфера. С помощью Z-буфера можно легко решить, какие объекты расположены на переднем плане, но при этом понадобится вдвое больший объем видеопамяти. Почти все современные 3D-ускорители имеют 24-х или 32-битную Z-буферизацию, что в значительной мере повышает разрешающую способность и, как следствие, качество рендеринга.

Есть и другие решения проблемы со скрытыми поверхностями, но все они решаются путем компромисса между использованием памяти дисплея и дополнительной нагрузкой на процессор. Главный метод, применяемый для peшения проблем, заключается в том, чтобы упорядочить (отсортировать) вершины многоугольников по их координатам Z. Тогда сначала закрашиваются наиболее отдаленные объекты на экране, а наиболее близкие объекты накладываются на дальние. При этом возникают проблемы с поверхностями, наклонными к оси Z, так как расстояние пикселя от заднего плана может изменяться по мере его удаления от вершины. Решение такой проблемы требует еще более сложных вычислений.

Можно сократить работу процессора, проявив небольшую хитрость при упорядочении объектов по их координатам Z. Если какая-то поверхность полностью скрыта другими или повёрнута от наблюдателя, то ее совсем не нужно рисовать первой. А если мы исключили операцию рисования, то многоугольник не надо заполнять картой текстуры, в связи с этим уменьшается количество работы для процессора.

Большинство массовых приложений трехмерной графики, в том числе игр, при построении объемных сцен следуют устоявшейся технологии, которую можно разбить на относительно обособленные этапы. Описываемая ниже общепринятая последовательность не является жестко заданной. При конкретной реализации на программном и аппаратном уровнях могут появляться существенные отличия, однако смысловое содержание блоков практически не меняется.

Главной функцией программ создания трехмерной графики является преобразование графических абстрактных объектов в изображения на экране монитора компьютера. Эти абстрактные математические описания должны быть визуализированы, т.е. преобразованы в видимую форму. Процедура визуализации основывается на жестко стандартизированных функциях, предназначенных для составления выводимого на экран целостного изображения из отдельных абстракций. Основными стандартными функциями являются:

- геометризация – это определение размеров, ориентации и расположения примитивов в пространстве и расчет влияния источников света;

- и растеризация - преобразование примитивов в пиксели на экране с нанесением нужных затенений и текстур.

Процесс визуализации трехмерной сцены на экране монитора компьютера происходит следующим образом:

  1. В первую очередь определяется состояние объектов, принимающих участие в сцене, которую необходимо отобразить (активен или нет).

  2. На следующем этапе каждому объекту в сцене сопоставляется соответствующая текущему моменту геометрическая модель.

  3. Затем модель разбивается на элементы – примитивы, которые называют полигонами (треугольник, многоугольник).

  4. Дальше предварительно накладывают текстуры и определяют параметры освещения.

  5. Затем рассчитывается положение камеры (наблюдателя) и линия визирования (взгляда).

  6. После этого отсекаются объекты невидимые наблюдателю и для каждого полигона данные о координатах вершин, присвоенной текстуре, параметрах освещенности и т. д., приводятся к виду, пригодному для обработки аппаратурой.

  7. И, наконец, выполняется закрашивание (рендеринг). Закрашивание происходит по точкам на основе данных о текстуре, степени прозрачности, параметрах тумана, освещении. Каждому пикселу, таким образом, присваивается определенный цвет, и он размещается в нужном месте буфера кадра.

  8. Далее может следовать этап наложения, какого либо эффекта на уже готовое изображение кадра.

Кроме формы объектов (описания их поверхностей), важное значение имеют их оптические свойства. Проще всего дело обстоит с непрозрачными объектами — все другие объекты, перекрытые ими для взгляда наблюдателя, просто невидимы. Эти объекты будут перекрывать и лучи от источников освещения, установленных в модели, на пути которых они встречаются. Сложнее дело обстоит с прозрачными и просвечиваемыми объектами. Прозрачность (transparency) объекта позволяет видеть и объекты, расположенные за ним, а просвечиваемость (trans-lucency) позволяет проходить через него лучам света от источников. Поверхность имеет некоторый цвет, а также характеризуется степенью отражения (она может быть глянцевой или матовой). Для того чтобы получить реалистичное отображение модели, приходится отслеживать прохождение лучей от установленных источников освещения, достигающих глаза воображаемого наблюдателя как при отражении от поверхностей, так и при преломлении при прохождении через прозрачные и просвечиваемые объекты. При этом должны учитываться эффекты перспективы, как оптической (искажение формы), так и атмосферной (имитация дымки или тумана).

Z-буфер требует дополнительной памяти, и, чем большая точность нужна для значений Z, тем больше памяти нужно для запоминания значений Z. Если используется разрешающая способность 640х400 и значения Z в виде 16-разрядных (двухбайтовых) чисел, то нужно иметь 0,5 мегабайта памяти только для Z-буфера. С помощью Z-буфера можно легко решить, какие объекты расположены на переднем плане, но при этом понадобится вдвое больший объем видеопамяти. От разрядности Z-буфера зависит разрешающая способность графического конвейера по глубине. При малой разрядности (например, 8 бит) для близко расположенных элементов рассчитанные значения Z могут совпасть, в результате картина перекрытий исказится. Большая разрядность буфера требует большого объема памяти, доступного графическому процессору. По нынешним меркам минимальная разрядность Z-буфера — 16 бит, профессиональные графические системы используют 32-битный Z-буфер. Почти все современные 3D-ускорители имеют 24-х или 32-битную Z-буферизацию, что в значительной мере повышает разрешающую способность и, как следствие, качество рендеринга.

Есть другие решения проблемы со скрытыми поверхностями, но все они решаются путем компромисса между использованием памяти дисплея и дополнительной нагрузкой на процессор. Главный метод, применяемый для peшения проблем, заключается в том, чтобы упорядочить (отсортировать) вершины многоугольников по их координатам Z. Тогда сначала закрашиваются наиболее отдаленные объекты на экране, а наиболее близкие объекты накладываются на дальние. При этом возникают проблемы с поверхностями, наклонными к оси Z, так как расстояние пикселя от заднего плана может изменяться по мере его удаления от вершины. Решение такой проблемы требует еще более сложных вычислений. Можно сократить работу процессора, при упорядочении объектов по их координатам Z. Если какая-то поверхность полностью скрыта другими или повёрнута от наблюдателя, то ее совсем не нужно рисовать первой. А если мы исключили операцию рисования, то многоугольник не надо заполнять картой текстуры, в связи с этим уменьшается количество работы для процессора.

 

 


Лицензия