Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Техническое обслуживание лазерных принтеров (проблемы с лазером, чем опасен лазер?).

Техническое обслуживание лазерных принтеров (проблемы с лазером, чем опасен лазер?).

Самым распространенным типом лазера является твердотельный, или полупроводниковый, лазер, который состоит из двух полупроводниковых пластинок, отличающихся введенными в них примесями. Возбуждение такого лазера осуществляют пропусканием через него внешнего электрического тока, при этом место соединения двух пластинок излучает свет обычно в инфракрасной части спектра. Рабочий материал, используемый в полупроводниковых лазерах, называется лазерным диодом, который может генерировать невидимый инфракрасный луч с максимальной выходной мощностью 5 мВатт, опасной для зрения человека.
Мощность излучения полупроводниковых лазеров лежит в пределах единиц милливатт (единичные лазерные диоды). Лазерный луч сильно сфокусирован и несколько миллионов фотонов почти одновременно попадают в одну и ту же точку, в которой концентрируется очень большая энергия.
Возможность генерации излучения с требуемой длиной волны достигается выбором или синтезом прямозонных полупроводников. Наиболее распространенным материалом для изготовления инжекционных лазеров является арсенид галлия и его соединения. С ростом температуры длина волны излучения лазеров периодически перескакивает в направлении более длинных волн. Это происходит в результате изменения показателя преломления материала лазера, а также с уменьшением ширины запрещенной зоны.
Стабильное излучение лазерного диода LD возможно только при определенном рабочем токе, величина которого лежит в пределах 40-90 мА и может колебаться в пределах ±8 мА. Превышение рабочего тока приводит к разрушению LD. Фирмы изготовители оптических преобразователей на этикетке с названием модели указывают рабочий ток LD, величина которого равна последнему трехзначному числу, деленному на величину сопротивления резистора (R10), стоящего в цепи эмиттера транзистора, управляющего мощностью излучения лазерного диода (величина сопротивления этого резистора обычно составляет 10-12 Ом). Например, рабочий ток лазерного диода равен 504/R10 = 50,4 мА. где R10 = 10 Ом. Мощность излучения LD контролируется монитор-фотодиодом (MD) и поддерживается на постоянном уровне цепями автоматического управления мощностью - АРС. Часть излучения лазерного диода LD попадает на монитор-фотодиод, который преобразует его в электрический сигнал. При уменьшении мощности излучения LD уменьшается потенциал на инвертирующем входе операционного усилителя DA, что приводит увеличению коллекторного тока транзистора VT2. т.е. увеличению рабочего тока LD. При увеличении мощности излучения происходит обратный процесс. Транзистор VT2 называется лазер-драйвером (рис. 1).

 

Рис.1
Лазеры и особенно СD - излучают интенсивное инфракрасное излучение, невидимое для человеческого глаза. Излучение может постепенно воздействовать на сетчатку глаза и приводить к ее повреждению и даже к потере зрения. Нельзя допускать попадания излучения в глаза из источника излучения или из волокна, подключенного к источнику. Перед осмотром выходного отверстия источника или волокна, убедитесь, что источник излучения отключен. Включен источник или нет, зрительно не видно, поэтому необходимо быть предельно осторожным. Прежде всего, перед работой по ремонту оптической системы, необходимо познакомиться с мерами предосторожности, которые необходимо соблюдать, чтобы не нанести вред своему зрению. Приступая к настройке и диагностике, необходимо сначала познакомиться с рядом особенностей, связанных с обслуживанием любых лазерных устройств.
Нанесенный на лазер желтым цветом знак "CAUSION" ("предостережение") означает, что немедленное закрывание глаз защитит глаза от повреждения. Нанесенный на лазер красный знак "DANGER" ("опасно") предупреждает, что даже кратковременное попадание луча в глаза опасно. Если вы видите символ лазера (рис. 2) - это предупреждение об опасности, с которой можно столкнуться при техническом обслуживании оборудования.

 

Рис.2

Кроме обычных мер предосторожности, предусматриваемых при обслуживании электронных схем, эксплуатация лазера требует некоторого специального, особого внимания. Как и любой источник высокоинтенсивного излучения, лазерный луч при прямом воздействии может вызвать повреждение глаз или ожоги кожи. К тому же луч лазера обычно человеческий глаз не видит. Для специалистов по обслуживанию таких устройств, которым в процессе ремонта приходится добираться до внутренних схем, и работать при включенном питании лазера (устранив блокировки, зажав переключатели и т.д.). В этих случаях следует, конечно, соблюдать особую осторожность. Необходимо отметить, что большая часть фирм-изготовителей, разработала целый ряд знаков, предупреждающих о наличии лазерного излучения (обычно это треугольник с яркой звездой внутри него). Кроме потенциально опасных лучей, лазер создает сильное электромагнитное излучение, которое, не являясь опасным для человека, оказывает отрицательное воздействие на наручные часы, магнитные ленты и т.д. Лазерные диоды, так же, как МОП и КМОП интегральные микросхемы, чувствительны к статическому электричеству. Поэтому и обращаться с ним следует соответствующим образом. Для предотвращения выхода из строя лазерного диода при транспортировке, фирмы-изготовители закорачивают выводы лазерного диода каплей припоя. После установки оптического преобразователя и подключения разъема необходимо удалить припой в месте закорачивания выводов. Точка, в которой необходимо удалить припой, указывается в паспорте оптического преобразователя. В случае снятия блокировок категорически запрещается смотреть непосредственно в объектив при включенном питании. Осматривать объектив следует со стороны, на расстоянии не менее 30 см.  


Лицензия