Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Управление массивами хранения данных.

Управление массивами хранения данных.

 

                Оборудование, входящее в состав системы хранения данных, имеет множество характеристик, и главную среди них выделить весьма затруднительно: для одних приложений требуется большая пропускная способность, другим - большая емкость, третьим - повышенные надежность функционирования и безопасность, четвертым - быстрота подключения устройств и т.д. Только учет всех особенностей деятельности компании и ее потребностей в информационном обеспечении позволит построить соответствующую ее нуждам систему.

                Наиболее часто в современных системах хранения находят применение RAID-массивы. Основные задачи, которые позволяют решить RAID, - это обеспечение отказоустойчивости дисковой системы и повышение ее производительности. Технологии RAID используются для защиты от отказов отдельных дисков. При этом практически все уровни RAID (кроме RAID-0) применяют дублирование данных (избыточность), хранимых на дисках. В RAID объединяются больше дисков, чем необходимо для получения требуемой емкости. Уровень RAID-5 хотя и не создает копий блоков данных, но все же сохраняет избыточную информацию, что тоже можно считать дублированием. Производительность дисковой системы повышается благодаря тому, что современные интерфейсы (в частности, SCSI) позволяют осуществлять операции записи и считывания фактически одновременно на нескольких дисках. Поэтому можно рассчитывать на то, что скорость записи или чтения, в случае применения RAID, увеличивается пропорционально количеству дисков, объединяемых в RAID. Существует несколько способов организовать RAID-систему: 
- программный способ (на рынке существует большое количество программного обеспечения для этих целей);
- аппаратный способ, т.е. с помощью RAID-контроллера.

                Необходимую производительность доступа серверов к данным можно обеспечить созданием выделенной высокоскоростной транспортной инфраструктуры между серверами и устройствами хранения данных (дисковым массивом и ленточными библиотеками). Для создания такой инфраструктуры в настоящее время наилучшим решением является SAN. Использование современных дисковых массивов с достаточным объемом кэш-памяти и производительной, не имеющей "узких мест" внутренней архитектурой обмена информацией между контроллерами и дисками, позволяет осуществлять быстрый доступ к данным. Оптимальное размещение данных (disk layout) по дискам различной емкости и производительности, с нужным уровнем RAID в зависимости от классов приложений (СУБД, файловые сервисы и т.д.), является еще одним способом увеличения скорости доступа к данным. Disk layout - это схема распределения данных приложения по дискам. Она учитывает, в какие уровни RAID организованы диски, число и размеры разделов на дисках, какие файловые системы используются и для хранения каких типов данных они предназначены.

                Перечислим основные требования по управляемости для RAID:
- управление политикой использования кэш-памяти для различных LUN (номер логического устройства), оно может потребоваться при "тонкой" настройке массива;
- наличие средств сбора статистики о работе массива;
- достаточно специфичное требование - наличие встроенных средств оптимизации работы массива, - однако, наличие таких средств может помочь, когда потребуется оптимизация, а квалифицированного персонала, способного её выполнить, не будет; 
- интеграция средств управления массива с уже развернутой системой управления, например, HP OpenView.

                Чтобы не сравнивать все существующие на рынке массивы, было бы удобно разбить их на классы. Тогда на основе полученных требований можно выбрать нужный класс и уже сравнивать массивы только этого класса. Классы массивов придумывать не надо, они уже определены самим рынком, это: начальный класс (low-end), средний класс (mid-range) и высший класс (high-end).

                Массивы указанных классов отличаются, в первую очередь, не количественными характеристиками, а функциональностью и архитектурой. К функциональности low-end массивов можно отнести поддержку различных уровней RAID и возможность дублирования контроллеров (если это не JBOD). От массивов класса mid-range уже требуется поддержка LUN-masking и создание PIT-копий. А в массивах класса high-end в дополнение к указанным возможностям также реализованы аппаратная репликация, поддержка OS/390 (zOS) и управление качеством сервиса (на уровне производительности в IOPS или пропускной способности в Мбайт/с).

                Но все же основным критерием, по которому можно отнести массив к одному из классов mid-range или high-end, является архитектура. Многие производители заявляют, что mid-range массивы имеют модульную архитектуру, а high-end массивы - монолитную. Это не совсем верно. Модульная или монолитная "архитектура" говорит о конструктиве массива - собирается из отдельных блоков или шкафов. В действительности архитектуру всех mid-range массивов (и многих low-end) можно характеризовать как "двухконтроллерную с общей шиной".

                Для high-end массивов характерна коммутируемая или матричная архитектура. Очевидно, что в данной архитектуре нет "узких мест", тогда как в mid-range архитектуре узкими местами являются: контроллер, поскольку каждый контроллер обслуживает свои RAID-группы (набор дисков, на которых реализован один уровень RAID), шина между контроллерами, ограниченное число FC-AL петель к дискам, расположение дисков RAID-группы "вдоль" одной петли FC-AL. В high-end массивах RAID-группы располагаются "поперек" FC-AL петель. Например, в high-end массивах Hitachi RAID-группа состоит из 4-х или восьми дисков, где каждый диск подключается к двум различным петлям от двух различных дисков контроллеров. Такая конфигурация позволяет выполнять операции записи-чтения со всех дисков RAID-группы параллельно, чего нельзя добиться в mid-range массивах, когда диски одной RAID-группы расположены вдоль одной петли и доступ к ним осуществляется по очереди. Иногда еще для high-end массивов говорят про "cache-centric" архитектуру, подчеркивая тем самым, что центральным звеном является кэш-память, к которой имеют доступ все контроллеры массива, тогда как в mid-range массивах кэш-память жестко привязана к определенному контроллеру.

                Указанные отличия в архитектуре приводят к потере производительности при масштабировании mid-range массивов, чего не наблюдается у high-end массивов при добавлении новых дисков. Хотя современные mid-range массивы имеют высокие характеристики масштабируемости: позволяют устанавливать до двух-трех сотен дисков, распределяя их по нескольким FC-AL петлям, а также наращивать кэш-память до 8 Гбайт, все же "узким местом" остается их архитектура, являющаяся ограничителем масштабируемости. Если придерживаться указанной классификации, то к классу high-end можно отнести, например, массивы EMC семейства Symmetrix. 

                Другой пример, система хранения данных среднего класса (mid-range) Hitachi TagmaStore Adaptable Modular Storage AMS1000, которая считается наследницей популярной системы Thunder 9585V, по своим характеристикам превосходит показатели, традиционно присущие системам хранения среднего класса. Она обеспечивает пропускную способность кэш-памяти 13 Гбайт/с, полную поддержку интерфейса Fibre Channel 4 Гбит/с, поддержку до 4096 логических разделов (LUN) и 16 Гбайт кэш-памяти, что на 70, 100, 100 и 100%, соответственно, лучше аналогичных показателей предшественницы. TagmaStore AMS1000 реализует такие мощные критически важные функции хранения, как создание в кэш-памяти 32 логических разделов, перемещение данных между разными уровнями хранения без прерывания работы приложений и - впервые в индустрии - поддержку одновременно нескольких протоколов (iSCSI, NAS и Fibre Channel) без помощи внешних серверов или адаптеров. AMS1000 стала первой из систем хранения среднего класса со специальной технологией многоуровневого хранения, позволяющей предприятиям оптимизировать инфраструктуру хранения для работы корпоративных приложений так, чтобы расходы, производительность, надежность и доступность соответствовали требованиям конкретного приложения. 

                AMS1000 предназначена для использования в качестве отдельно стоящей системы хранения и обеспечивает заказчикам высокую гибкость при создании нескольких уровней хранения в рамках одной стойки (в том числе жестких дисков с интерфейсом SATA емкостью 250, 400 и 500 Гбайт), позволяя применять высокоскоростные диски Fibre Channel для обслуживания онлайновых приложений, которым требуется минимальное время отклика, а затем без нарушения работы приложений перемещать данные на экономичные SATA-диски для архивирования. AMS1000 также может выступать в качестве внешней многоуровневой или архивной системы хранения в виртуализованной среде под управлением универсальной платформы Hitachi TagmaStore Universal Storage Platform либо контроллера Network Storage Controller и ПО Hitachi Universal Volume Manager.

                Поскольку подключение систем хранения осуществляется через серверы границу, отделяющую систему хранения данных от серверов, надо проводить на самих серверах выше уровня менеджера дисковых томов. А почему именно так, можно убедиться на следующем примере: в системах, где требуется высокий уровень готовности, дисковый массив может считаться единой точкой отказа (Single Point Of Failure - SPOF). Для ликвидации SPOF обычно устанавливается второй массив, при этом данные зеркалируются на оба массива. Сегодня одним из самых распространенных средств зеркалирования является менеджер дисковых томов (например, VERITAS Volume Manager). Таким образом, менеджер дисковых томов вовлечен в процесс обеспечения отказоустойчивости системы хранения данных и становится её компонентом.


Лицензия