Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по сетям

Стр. 9 из 39      1<< 6 7 8 9 10 11 12>> 39

Гибернация (энергосберегающий режим операционной системы компьютера).

Статья добавлена: 09.01.2020 Категория: Статьи по сетям

S4(«Спящий режим» (Hibernation) в Windows, «Safe Sleep» в Mac OS X, также известен как «Suspend to disk», хотя спецификация ACPI упоминает только термин S4) - в этом состоянии всё содержимое оперативной памяти сохраняется в энергонезависимой памяти, такой, как жёсткий диск (состояние операционной системы, всех приложений, открытых документов ит.д.). Это означает, что после возвращения из S4 пользователь может возобновить работу с места, где она была прекращена, аналогично режиму S3. Различие между S4 и S3, кроме дополнительного времени на перемещение содержимого оперативной памяти на диск и назад, в том, что перебои с питанием компьютера в S3 приведут к потере всех данных в оперативной памяти, включая все несохранённые документы, в то время как компьютер в S4 этому не подвержен. S4 весьма отличается от других состояний S и сильнее S1-S3 напоминает G2 Soft Off и G3 Mechanical Off. Система, находящаяся в S4, может быть также переведена в G3 Mechanical Off (Механическое выключение) и все ещё оставаться в S4, сохраняя информацию о состоянии так, что можно восстановить операционное состояние после подачи питания Гибернация (англ. Hibernation - «зимняя спячка») энергосберегающий режим операционной системы компьютера, позволяющий сохранять содержимое оперативной памяти на энергонезависимое устройство хранения данных (жёсткий диск) перед выключением питания. В отличие от ждущего режима, при использовании гибернации подача электроэнергии полностью прекращается. При включении содержимое памяти восстанавливается (загружается с диска в память), и пользователь может продолжить работу с того же места, на котором он остановился, так как все запущенные ранее программы продолжают выполняться. В русскоязычной версии Windows XP функция гибернации называлась «Спящий режим», но начиная с Windows Vista, этот режим уже носит название «Гибернация». Кроме того, в Windows Vista уже появилась и дополнительная функция «гибридный спящий режим», при которой содержимое ОЗУ копируется на диск, но питание компьютера не отключается. Таким образом, данные пользователя не будут потеряны в случае отключения электропитания, но в то же время «пробуждение» занимает меньше времени. В OS X спящий режим объединён со ждущим. При этом обычный спящий режим OS X соответствует гибридному в Windows Vista, а при низком заряде аккумулятора (в ноутбуках) используется режим «глубокого сна», аналогичный гибернации, при котором питание компьютера отключается полностью. Режим «Гибернация» имеет свои преимущества и недостатки:

Конфигурирование системы по технологии Plug-and-Play и Setup BIOS.

Статья добавлена: 26.12.2019 Категория: Статьи по сетям

Конфигурирование системы по технологии Plug-and-Play и Setup BIOS. 1. Конфигурирование Plug-and-Play. До внедрения технологии Plug and Play установка и конфигурирование устройств в PC-совместимом компьютере представляла собой довольно сложный процесс. Пользователь должен назначить устройству прерывание, порты ввода-вывода и каналы DMA, т.е. ресурсы, неиспользуемые в данный момент другими устройствами. Это выполнялось с помощью перемычек и переключателей на плате устанавливаемого устройства. При неверном выборе параметров возникал конфликт устройств. Такой конфликт являлся причиной других ошибок - например, операционная система (ОС) отказывалась загружаться. Технология Plug and Play значительно упростила процесс установки и конфигурирования новых устройств. Пользователю необходимо лишь вставить плату в свободный разъем, а система автоматически выделит необходимые ресурсы. Технология Plug and Play состоит из следующих основных компонентов: - Plug and Play BIOS; - Extended System Configuration Data (ESCD); - операционная система Plug and Play. 2. Конфигурирование компьютера - Setup BIOS. Компьютеры могут иметь различный и изменяемый состав аппаратных средств, и их многие элементы требуют программного конфигурирования. Параметры конфигурирования, установленные с помощью утилиты Setup, запоминаются в энергонезависимой памяти. Часть из них всегда хранится в традиционной CMOS Memory, объединенной и с часами-календарем RTC (Real Time Clock). Другая часть волей разработчика может помещаться и в энергонезависимую (например, флэш) память (NVRAM). Кроме этой части статически определяемых параметров, имеется область энергонезависимой памяти ESCD для поддержки динамического конфигурирования системы Plug and Play, которая может автоматически обновляться при каждой перезагрузке компьютера. Этот процесс динамического конфигурирования и является причиной «задумчивости» при перезагрузке даже мощных компьютеров, имеющих средства РпР, а также не всегда предсказуемого поведения программного обеспечения, вызванного изменением распределения ресурсов по инициативе той же системы PnP (Plug and Play - включай и работай). Все современные компьютеры имеют утилиту Setup, встроенную в ROM BIOS. Утилита BIOS Setup имеет интерфейс в виде меню, иногда даже оконный с поддержкой мыши. Для входа в Setup во время выполнения POST появляется предложение нажать клавишу del. Иногда для этого используется комбинация ctrl+alt+esc, еsc, ctrl+esc, бывают и экзотические варианты (нажать клавишу F12 в те секунды, когда в правом верхнем углу экрана виден прямоугольник). Некоторые версии BIOS позволяют войти в Setup по комбинации ctrl+alt+esc в любой момент работы компьютера. Предложение (и способ - нажатие F1 или F2) входа в Setup появляется, если POST обнаружит ошибку оборудования, которая может быть устранена посредством Setup. Удержание клавиши INS во время POST в ряде версий BIOS позволяют установить настройки по умолчанию.

Проблемы защиты пользователя глобальных компьютерных сетей.

Статья добавлена: 24.12.2019 Категория: Статьи по сетям

Проблемы защиты пользователя глобальных компьютерных сетей. Сетевые технологии и, в частности, сеть Интернет, не только предоставляют качественно новые положительные возможности для жизни и деятельности организаций любого типа и уровня и отдельных граждан, но и несут определенную опасность. Ключевое отличие сети от телевидения заключается в том, что она предоставляет не только огромные возможности получения информации, но и мощные средства сбора и анализа данных и приобретает качественно новый характер - речь идет прежде всего о личной и общественной безопасности. Это, в свою очередь, влечет за собой качественно новый подход к дисциплине использования сетевых ресурсов. Российские пользователи нуждаются в определенной разъяснительной работе, позволяющей внятно донести до них не только преимущества новых технологий, но и возможные теневые аспекты их использования. Глобальные компьютерные сети - основное оружие информационных войн, различные модели войны для ее ведения традиционными информационными средствами уже хорошо отработаны в том числе и новые реализуемые через Интернет. Возможности информационного оружия велики и требуют раз работки адекватных средств защиты. Фактически, любой пользователь сети Интернет имеет доступ к информационному оружию. Не редкость установка в сетях программ контроля трафика и отслеживания паролей, засылка полиморфных кодов по электронной почте (так называемых бомб), активное использование программ анонимной рассылки почты (ремейлеров), которые открывают дорогу рассылке самой разрушительной информации, например, рецептов домашнего изготовления наркотических и взрывчатых веществ или предложений от киллеров. Это требует введения эффективных средств контроля и защиты. Государство должно возглавить разработку национальной защиты от информационного воздействия, в рамках частного бизнеса работы видимо должны финансироваться самими компаниями. Телекоммуникационные компании - наиболее незащищенные объекты. У них сконцентрированы коммутаторы, мосты и переключатели. Их разрушение может привести к непоправимым последствиям. России необходим отдельный кодекс Интернет-провайдеров, возлагающий на них ответственность за содержимое информационных ресурсов заказчика, расположенных на их серверах. Вторжении Интернет в частную жизнь - это отдельный вопрос. Наибольшее опасение вызвали проблемы наличия опасных и оскорбительных общедоступных материалов в Ингернет, вторжение в личную жизнь со стороны правительства, вторжение в личную жизнь со стороны частных компаний, и далее такие проблемы, как, например, потеря личных контактов между людьми и накопление персональных данных в компьютерных базах доступных государству и частным лицам. Таким образом, пользователь сети может получить данные на любого человека, узнать уровень его доходов, состав семьи, привычки. Фактически это и есть вторжение в личную жизнь. Таким образом, попав в любую из баз данных, сведения о человеке становятся доступными для любого агентства. Очень опасна тенденция сбора персональных данных о людях и фирмах, который проводят некоторые компании, опрашивая и анкетируя в сетях детей, завлекая их различного рода псевдоиграми, викторинами, призами. Привлеченный возможностью получить игрушку или другой приз, ребенок заполняет анкету, сообщая самые различные данные о своей семье, работе отца, брата и т. д... Сформированные на основе таких анкет базы данных могут затем свободно продаваться, и их конфиденциальность естественно не обеспечивается.

Волоконная оптика в компьютерных технологиях.

Статья добавлена: 24.12.2019 Категория: Статьи по сетям

Волоконная оптика в компьютерных технологиях. Волоконная оптика используется как коммуникационная среда, соединяющая электронные устройства. Волоконно-оптическая связь может быть организована между компьютером и его периферийными устройствами, между двумя телефонными станциями или между станком и его контроллером на автоматизированном заводе. Применение волоконной оптики связано с преобразованием электрического сигнала в световой и обратно, стоимость волоконной оптики достаточно высока, но преимущества волоконной оптики определяемые уникальными характеристиками оптоволокна делают его наиболее подходящей передающей средой во множестве различных областей техники. Эти уникальные характеристики оптоволокна органично согласовываются, позволяя передавать данные с высокой скоростью на большие дистанции и с небольшим числом ошибок. Оптоволоконные линии обеспечивают: - широкую полосу пропускания линии; - нечувствительность линий к электромагнитным помехам; - низкие потери; - малый вес и малый размер; - безопасность и секретность. Важность каждого из этих достоинств зависит от конкретного применения оптоволоконных линий. В одном случае широкая полоса пропускания и низкие потери являются самыми ценными характеристиками. В других случаях важна безопасность и секретность передачи данных, которые легко обеспечиваются при использовании волоконной оптики. Потребности общества в передаче все больших и больших объемов информации электронным способом постоянно увеличиваются. Увеличение полосы пропускания передающей среды и частоты несущей потенциально увеличивают возможности передачи информации. Радиочастоты используемые для передачи выросли на пять порядков, от примерно 100 КГц до приблизительно 10 ГГц, но частоты светового сигнала на несколько порядков превосходят максимально-возможные частоты радиоволн. Изобретение лазера, в котором свет используется в качестве несущей сразу увеличило потенциальный диапазон на четыре порядка — до 100 000 ГГц (или 100 терагерц, ТГц). Теоретически волоконная оптика может работать в диапазоне до 1 ТГц, однако практически используемый в настоящее время диапазон частот еще достаточно далек от этих предельных значений. Применяемая сегодня полоса пропускания волоконной оптики превосходит аналогичный параметр медного кабеля. Коммуникационные возможности волоконной оптики только начинают развиваться, в то время как возможности медного кабеля достигли своего верхнего предела.

Способы доступа в компьютер пользователя (ликбез).

Статья добавлена: 23.12.2019 Категория: Статьи по сетям

Способы доступа в компьютер пользователя (ликбез). С ростом количества мобильных устройств и облачных служб компьютерная среда претерпевает постоянные изменения. Растет и число угроз конфиденциальности и безопасности — они приобретают все более разнообразный и изощренный характер. Только антивирусной программы уже недостаточно для надежной защиты. Теперь стало необходимо и надежное аппаратное решение этой проблемы, но это направление создало и ряд новых угроз. Троянская программа. Через Интернет можно принять троянскую программу, используемую хакерами для сбора информации, её разрушения или модификации, нарушения работоспособности компьютера, или использования его ресурсов в своих целях. Действие самой троянской программы может и не быть в действительности вредоносным, но трояны заслужили свою дурную славу за их использование в инсталляции программ типа Backdoor. Бэкдор (от back door, чёрный ход) программа или набор программ, которые устанавливает взломщик (хакер) на взломанном им компьютере сразу после получения первоначального доступа (с целью повторного получения доступа к системе). По принципу распространения и действия троян не является вирусом, так как он не способен распространяться саморазмножением. Троянская программа запускается пользователем вручную или автоматически, программой или частью операционной системы, выполняемой на компьютере-жертве (как модуль или служебная программа). Троянские программы часто используются для обмана систем защиты, в результате чего система становится уязвимой, и позволяет, таким образом, неавторизированный доступ к компьютеру пользователя. Троянская программа может в той или иной степени имитировать (или даже полноценно заменять) задачу или файл данных, под которые она маскируется (программа установки, прикладная программа, игра, прикладной документ, картинка). В том числе, злоумышленник может заново собрать существующую программу с добавлением к её исходному коду троянские компоненты, а потом выдавать за оригинал или подменять его. Программа-шпион – это программа, которая обычно является скрытым компонентом различных бесплатных приложений, которые пользователи скачивают из Интернета. Таким образом, при установке подобных приложений пользователь сам ставит на свой компьютер шпиона. Шпионское программное обеспечение может также располагаться и на веб-страницах. Затем оно попадает на компьютеры пользователей, посетивших такие страницы. Программы-шпионы собирают информацию о Ваших привычках пользователя Интернета (чаще всего, в рекламных целях). Как только программа-шпион проникла на ваш компьютер, она сразу начинает собирать интересующие ее сведения и передавать их своему хозяину (автору). Так узнают пароли, номера кредитных карт, адреса электронной почты и т.д. Помимо этого, когда программа-шпион передает полученные данные своему автору, она создает помехи и высокую загруженность сети, а это становится причиной серьезных неудобств работы пользователя. Подсистема Intel ME (Intel Management Engine). Intel Management Engine (ME) – встроенная в компьютерные платформы подсистема, обеспечивающая аппаратно-программную поддержку различных технологий Intel. Архитектура каждой современной мобильной/лаптопной/дескопной/серверной компьютерной платформы с чипсетом/SoC от Intel включает в себя самую скрытную (от пользователя системы) и привилегированную среду исполнения — подсистему Intel ME. Intel Management Engine (Intel ME) — автономная подсистема, встроенная почти во все чипсеты процессоров Intel с 2008 года. Она состоит из проприетарной прошивки, исполняемой отдельным микропроцессором. Так как чипсет всегда подключен к источнику тока (батарейке или другому источнику питанию), эта подсистема продолжает работать даже когда компьютер отключен.

Проблемы использования «доноров» при восстановлении данных с HDD при неисправной плате электроники.

Статья добавлена: 17.12.2019 Категория: Статьи по сетям

Проблемы использования «доноров» при восстановлении данных с HDD при неисправной плате электроники. Жесткий диск состоит из гермоблока и платы электроники. В гермоблоке расположен шпиндельный двигатель, вращающий пакет из одного или нескольких магнитных дисков, блок магнитных головок (сокращенно БМГ), ранее управляемый шаговым двигателем, а теперь - устройством под названием «звуковая катушка» (voice coil), а также предусилитель/коммутатор чтения/записи, смонтированный в микросхеме либо непосредственно на БМГ, либо расположенный на отдельной плате рядом с ней. Ранее плата электроники включала в себя: контроллер шпиндельного двигателя и звуковой катушки, управляющий вращением пакета диска и позиционированием головок; канал чтения/записи; микроконтроллер, являющийся, по сути, «сердцем» винчестера; контроллер диска, отвечающий за обслуживание интерфейса. Поэтому еще был смысл подолгу зависать с осциллографом, выискивая неисправный элемент для восстановления ее работоспособности. Но степень интеграции схем в чипах начала стремительно нарастать, производители перешли на заказные чипы, а цены на винчестеры упали ниже плинтуса. Ремонтировать электронику стало не только сложно, но еще и нерентабельно. Основным способом возвращения работоспособности платы электроники стала замена всей платы контроллера целиком. Берется диск идентичный модели (донор), и плата переставляется на гермоблок с восстанавливаемыми данными (акцептор). Поиски доноров серьезно осложняются тем, что период производства большинства винчестеров намного меньше их среднего срока существования. Компьютерные магазины постоянно обновляют свой ассортимент и приобрести модель аналогичную той, что вы купили несколько лет назад, скорее всего, не удастся. Остаются радио-рынки и фирмы, торгующие поддержанными комплектующими, но выбор здесь никакой. У разных моделей винчестеров совместимость плат электроники сильно неодинакова, некоторые требуют совпадения всех цифр в номере модели, некоторые соглашаются работать только с «родственным» контроллером. А некоторые могут не работать даже при полном совпадении всех букв и цифр и тогда приходится перебирать одного донора за другим в надежде найти подходящий. Теперь поиски доноров серьезно осложняются и индивидуальными настройками диска, которые характеризуются адаптивами. Нашествие адаптивов началось сравнительно недавно. До этого индивидуальные настройки диска сводились к высокоуровневым наслоениям, никак не препятствующим чтению информации на физическом уровне. Перестановка плат могла привести к невозможности работы с диском средством операционной системы, но данные всегда было можно прочитать посекторно стандартными ATA-командами, программами BIOS (INT 13/02) или, на худой конец, на уровне физических адресов в технологическом режиме. Но плотность информации неуклонно росла и нормативы допусков ужесточались, а, значит, усложнялся и удорожался производственный цикл. В промышленных условиях невозможно изготовить два абсолютно одинаковых жестких диска. В характеристиках аналоговых элементов (катушек, резисторов, конденсаторов) неизбежно возникает разброс, следствием которого становится рассогласование коммутатора/предусилителя. Но с этим еще как-то можно бороться. Сложнее справится с неоднородностью магнитного покрытия, влекущего непостоянность параметров сигнала головки в зависимости от угла поворота позиционера. Таким образом, производитель должен был либо уменьшить плотность информации до той степени, при которой рассогласованиями можно пренебречь (но в этом случае для достижения той же емкости придется устанавливать в диск больше пластин, что удорожает конструкцию и вызывает свои проблемы), либо улучишь качество производства (но это настолько нереально, что при современном уровне развития науки, экономики и техники даже не обсуждается), либо калибровать каждый жесткий диск индивидуально, записывая на него так называемые адаптивные настройки. Вот по этому пути производители и пошли.

Функции маршрутизаторов.

Статья добавлена: 11.12.2019 Категория: Статьи по сетям

Функции маршрутизаторов. Объединяющим центральным элементом большой гетерогенной сети, состоящей из большого числа разветвленных частей является маршрутизатор. Главной задачей маршрутизатора является объединение различных подсетей таким образом, чтобы любой компьютер мог обмениваться пакетами данных с другими компьютерами в составе общей сети, независимо от их принадлежности к той или иной подсети. Маршрутизатор является устройством, которое обеспечивает взаимодействие между компьютерными сетями, и передает в каждую сеть только предназначенную ей часть всего потока данных. Функционирование на сетевом уровне дает маршрутизаторам возможность выбирать какие данные и в какую сеть направлять. Маршрутизатор может быть реализован полностью программным способом, в этом случае он представляет собой модуль операционной системы, установленной на компьютере общего назначения. Можно реализовать маршрутизатор программно-аппаратным способом, тогда он будет представлять собой специализированное вычислительное устройство, в котором одна часть функций выполняется нестандартной специализированной аппаратурой, а другая часть функций будет реализовываться программными модулями, работающими под управлением специализированной операционной системы (ОС). В соответствии с уровнями модели OSI, функции маршрутизатора могут быть разбиты на три группы (см. рис. 1).

Физические среды передачи информации в компьютерных сетях.

Статья добавлена: 06.12.2019 Категория: Статьи по сетям

изические среды передачи информации в компьютерных сетях. Важнейшим компонентом, определяющим во многом, состав оборудования, эффективность работы и расстояния между абонентами сети, является используемая в компьютерной сети физическая среда установления соединений. Для локальных сетей обычно используют три принципиальные схемы соединения: с помощью витой пары, коаксиального или волоконно-оптического кабеля.

Нейрокомпьютинг (ликбез).

Статья добавлена: 06.12.2019 Категория: Статьи по сетям

Нейрокомпьютинг (ликбез). Нейронная сеть — это сеть с конечным числом слоев из однотипных элементов — аналогов нейронов с различными типами связи между слоями. Элементарным строительным блоком нейронной сети является нейрон, осуществляющий взвешенное суммирование поступающих на его вход сигналов. Результат такого суммирования образует промежуточный выходной сигнал, который преобразуется активационной функцией в выходной сигнал нейрона. Среди основных преимуществ нейронной сети: инвариантность методов ее синтеза к размерности пространства признаков и размерам нейронной сети, адекватность перспективным технологиям, отказоустойчивость в смысле монотонного, а не катастрофического изменения качества решения задачи в зависимости от числа вышедших из строя элементов. Нейрокомпьютер — это вычислительная система с параллельными потоками одинаковых команд и множественным потоком данных. Для большей ясности будем считать, что нейросетевые системы, реализованные программно на типовых ПК, относятся к нейроэмуляторам, на программном уровне реализующим типовые нейрооперации (взвешенное суммирование и нелинейное преобразование). Нейросетевые системы, реализованные в виде плат расширения стандартных вычислительных систем, будем называть нейроускорителями (взвешенное суммирование, как правило, реализуется аппаратно, например, на основе трансверсальных фильтров, а нелинейные преобразования — программно). Системы, реализованные в виде функционально законченных специализированных вычислительных устройств, следует относить к нейрокомпьютерам. Нейрокомпьютеры являются вычислительными системами с высоким параллелизмом, реализуемым на основе специализированной элементной базы, ориентированной на выполнение нейросетевых операций в нейросетевом логическом базисе. Эффективное применение нейрокомпьютеров характерно, в частности, для случаев, требующих резкого сокращения времени обработки при решении пространственных задач повышенной размерности, которые во множестве можно найти практически в любой области: обработка изображений, выделение и слежение за движущимися объектами, задачи распознавания и классификации. Нейрокомпьютинг становится поистине массовой наукой.

Конфигурирование компьютера - Setup BIOS, утилита BIOS Setup (ликбез).

Статья добавлена: 04.12.2019 Категория: Статьи по сетям

Конфигурирование компьютера - Setup BIOS, утилита BIOS Setup (ликбез). Компьютеры могут иметь различный и изменяемый состав аппаратных средств, и их многие элементы требуют программного конфигурирования. Параметры конфигурирования, установленные с помощью утилиты Setup, запоминаются в энергонезависимой памяти. Часть из них всегда хранится в традиционной CMOS Memory, объединенной и с часами-календарем RTC (Real Time Clock). Другая часть волей разработчика может помещаться и в энергонезависимую (например, флэш) память (NVRAM). Кроме этой части статически определяемых параметров, имеется область энергонезависимой памяти ESCD для поддержки динамического конфигурирования системы Plug and Play, которая может автоматически обновляться при каждой перезагрузке компьютера. Этот процесс динамического конфигурирования и является причиной «задумчивости» при перезагрузке даже мощных компьютеров, имеющих средства РпР, а также не всегда предсказуемого поведения программного обеспечения, вызванного изменением распределения ресурсов по инициативе той же системы PnP (Plug and Play - включай и работай). Все современные компьютеры имеют утилиту Setup, встроенную в ROM BIOS. Утилита BIOS Setup имеет интерфейс в виде меню, иногда даже оконный с поддержкой мыши.

Решение проблем нестандартной конфигурации в больших группах персональных компьютеров.

Статья добавлена: 04.12.2019 Категория: Статьи по сетям

Решение проблем нестандартной конфигурации в больших группах персональных компьютеров. Проблемы обычно возникают из-за того, что приобретение персональных компьютеров, программных средств и другой сложной техники осуществляется хаотично и не продуманно. Решение о приобретении компьютеров принимают различные люди в разное время, которые далеки от проблем эксплуатации, модернизации и ремонта этой техники. Сами того не подозревая они создают дополнительные сложные проблемы для эксплуатационного персонала, а в конечном счете возможно и для самих себя. Кроме того с течением времени конфигурация персональных компьютеров и их программного обеспечения в связи с изменениями потребностей конкретного пользователя в значительной степени изменяется. Таким образом формируется большое число персональных компьютеров оригинальной конфигурации и воспрепятствовать этому практически невозможно. В разных конфигурациях естественно возникают и разные проблемы. Очень часто возникают проблемы связанные именно с неудачным сочетанием конфигураций аппаратных и программных компонентов компьютера, несовместимостью и конфликтами устройств из-за использования имеющихся системных ресурсов. Фирмы-изготовители программных средств и аппаратуры персональных компьютеров не всегда точно указывают версию своего продукта. Иногда новые версии продукта выпускаются без необходимых описаний отличий и особенностей продукта. Поэтому достаточно часто один и тот же компьютер или программа с одинаковым номером версии ведут себя совершенно по разному, хотя в принципе так и должно быть - ведь они на самом деле разные. Такая ситуация и квалифицированного специалиста может загнать в тупик. Большая номенклатура компьютеров и их компонентов при отсутствии по ним какой- либо технической документации не позволяет иметь запас аппаратных компонентов для быстрой замены дефектных узлов компьютеров с дальнейшим их ремонтом в лабораторных условиях. Такая ситуация резко увеличивает время восстановления ремонтируемого оборудования и трудоемкость ремонта. За счет жесткого контроля и грамотного планирования приобретения вычислительной техники можно добиться единообразия достаточно больших групп компьютеров.

Восприятие и анализ диагностической информации (ликбез).

Статья добавлена: 02.12.2019 Категория: Статьи по сетям

Восприятие и анализ диагностической информации (ликбез). Важным моментом при поиске неисправности является правильное восприятие и анализ диагностической информации в процессе последовательного выполнения трех групп программ: «Начальный загрузчик», IPL-1(MBR), IPL-2(BOOT-сектор), программ операционной системы и ее оболочек), что позволяет в дальнейшем планировать действия процесса диагностики. Мы можем зрительно, на слух и за счет своего обоняния получить следующую диагностическую информацию: - состояние индикаторов системной платы, внешних устройств, диагностических плат; - сообщения программ на экране монитора; - звуковые сообщения программ через динамик; - механические перемещения и вращения узлов внешних устройств и звуковые эффекты, связанные с этим; - тепловые эффекты и запахи, вызываемые нагревом. Необходимо, после включения компьютера, дождаться устойчивого стационарного состояния системы после отказа, и оценить это состояние (т. е. желательно выяснить выполнялась ли процессором программа, если выполнялась, то какая программа). Необходимо определить какая информация поступила от последней программы до прихода системы в устойчивое стационарное состояние. Далее проводим тщательный анализ полученной информации и планируем действия, направленные на получение уточняющей диагностической информации. Возможны три основных устойчивых стационарных состояния (после отказа), связанных с соответствующей группой исполняемых после включения электропитания программ: устойчивое состояние после отказа во время выполнения программ POST-теста (I); устойчивое состояние после отказа во время выполнения программ процесса загрузки операционной системы (II); устойчивое состояние после отказа во время выполнения программ операционной системы (III).

Стр. 9 из 39      1<< 6 7 8 9 10 11 12>> 39

Лицензия