Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!
Подтверждая отправку данной формы, Вы даете Согласие на обработку персональных данных в соответствии с Политикой обработки персональных данных

Статьи по мониторам

Стр. 17 из 31      1<< 14 15 16 17 18 19 20>> 31

DisplayPort, разъемы, переходники, совместимость.

Статья добавлена: 24.04.2017 Категория: Статьи по мониторам

DisplayPort, разъемы, переходники, совместимость. Дисплей Порт состоит из главной линии связи (Main Link), вспомогательного канала (Aux Chennel), и горячего канала (Hot Plug Detect). Главная связь - однонаправленный, с высокой пропускной способностью и низким временем ожидания, канал используемый для транспорта изохронных потоков данных, типа несжатого видео и аудио. Вспомогательный Канал (AUX CH) - полудуплексный двунаправленный канал, используемый для связи по управлению и для управления устройством (для того, чтобы передать управление и принять информацию о состоянии). Сигналы горячего канала (HPD) служат запросами на прерывание от устройств. Cтандарт DisplayPort обладает следующими преимуществами: - использование микропакетного протокола передачи данных допускает легкую расширяемость и адаптируемость этого стандарта, в частности, в новых версиях ввели возможность передачи нескольких потоков видео по одному физическому соединению; - реализована возможность прямого управления LCD-панелями, что в сочетании с унификацией внешнего и внутреннего вариантов интерфейсов позволяет в перспективе значительно упростить конструкцию ноутбуков и LCD – мониторов; - поддержка стандартов кодирования цвета YCbCr и RGB; - вспомогательные линии интерфейса могут быть использованы для самых различных целей, в частности, для подключения USB-устройств, что упрощает подключение мониторов со встроенной периферией (web-камеры, микрофоны, TouchScreen); - меньшее количество линий передачи данных в сочетании с отсутствием отдельных линий синхронизации приводит к уменьшению паразитного электромагнитного излучения; - более компактный разъём и тонкий кабель (рис.1) позволяют отказаться от использования винтов в разъёме и свободно вставлять кабель в соответствующее гнездо одной рукой (поскольку DisplayPort - это интерфейс как для внешних, так и для встроенных дисплеев, в нём используются два типа разъёмов).

Мультистрочная адресация в OLED позволяет значительно уменьшить пиковый ток.

Статья добавлена: 21.04.2017 Категория: Статьи по мониторам

Мультистрочная адресация в OLED позволяет значительно уменьшить пиковый ток. OLED является новой технологией, с помощью которой можно производить тонкие, гибкие и яркие дисплеи. OLED-дисплеи изготовляются из органических светоизлучающих материалов и поэтому OLED-дисплеи не требуют подсветки и поляризационных фильтрующих систем, которые используются в LCD-дисплеях. Ho в OLED есть и проблемы - деградация. Основной причиной деградации в OLED является большой пиковый ток, который протекает через светодиоды пикселя в момент адресации строки. В традиционной схеме пассивной адресации для визуализации изображения производится последовательная выборка строк. Этот метод имеет одно, но очень существенное достоинство - он прост и очень дешев. Однако это не единственный способ адресации в матричных дисплеях. Альтернативой ему является мультистрочная или же активная адресация (не путать с активноматричной адресацией). Мультистрочная адресация в настоящее время широко используется в малоформатных цветных и монохромных STN-панелях для сотовых телефонов. Свои методы мультистрочной адресации запатентовало несколько известных производителей ЖК-дисплеев. Безусловно, реализация мультистрочной адресации значительно сложнее, чем традиционная последовательная адресация. Используются ортогональные функциональные преобразования, память, специальные вычисления для синтеза сигналов строк и столбцов. В случае с STN-дисплеями использование мультистрочной адресации позволяет увеличить контраст и уменьшить время реакции дисплея. Существенное отличие пассивной адресации ЖК-дисплеев и OLED-дисплеев: для первых управляющим сигналом является эффективное напряжение, а для вторых — интегральный ток. То есть при пассивной адресации OLED через шины адресации требуется передавать энергию для возбуждения светодиодных пикселей матрицы. Для OLED-панелей применение мультистрочной адресации позволит значительно уменьшить пиковый ток. Основная идея метода — использование токовой закачки в пиксели матрицы не за один цикл выборки, а за несколько. Импульсный ток при этом может быть значительно уменьшен, следовательно, будет снижена деградация органического материала. При этом можно уменьшить проявление и кросс-эффекта, связанного с протеканием больших токовых сигналов по шинам адресации. Другой положительный эффект - расширение степени мультиплексирования и границ применимости пассивной адресации на больший формат OLED-экранов. Путей для реализации метода может быть несколько. Например, можно использовать декомпозицию или интеграцию требуемого изображения из нескольких последовательных изображений - сэмплов. Синтез сэмплов осуществляется на основе анализа контекста исходного изображения.

Пример диагностики и выявления неисправностей инвертора источника питания монитора.

Статья добавлена: 26.05.2020 Категория: Статьи по мониторам

Пример диагностики и выявления неисправностей инвертора источника питания монитора. Вашему вниманию предлагается комбинированная плата источников питания монитора LG FLATRON L1953S. На ней собраны схемы блока питания монитора и инвертор, формирующий высоковольтное напряжение для ламп задней подсветки. Выходными напряжениями для блока питания являются шины +5В и +12В, которые в дальнейшем подаются на на основную плату управления монитором и высоковольтный источник для ламп задней подсветки - инвертор. Структурная схема источников питания монитора приведена на рис. 1. Флуоресцентные лампы с холодным катодом (CCFL) являются очень ярким источником белого света и потребляют приемлемо небольшую мощность. Питание и начальный пуск ламп обеспечивается специальными схемами преобразователей напряжения - инверторами. Получение этих высоковольтных импульсных напряжений осуществляется из низковольтного напряжения постоянного тока. В данном мониторе для создания светового потока задней подсветки используется четыре CCFL лампы. Схемотехника силовой части источника выполнена по классической мостовой топологии. Питается данный инвертор, напряжением +12V. Напряжение +5V, необходимое для питания управляющей микросхемы, формируется стабилизатором параметрического типа на дискретных элементах. Управление инвертором обеспечивается тремя сигналами, формируемыми на основной управляющей плате монитора. Этими сигналами являются: M/S, DIM и ON.

Гамма-коррекция.

Статья добавлена: 05.04.2017 Категория: Статьи по мониторам

Напряжения которые прикладываются к стокам TFT транзисторов в режиме отображения изображения формируются столбцовыми драйверами в соответствии с данными, которые поступают от видеоконтроллера основной платы управления монитора. В столбцовом драйвере 6 или 8 битный цифровой код преобразовывается в аналоговый сигнал для TFT транзистора. В процессе преобразования цифрового кода в аналоговый сигнал, на драйвере осуществляется гамма коррекция этого сигнала с учетом нелинейных вольтамперных характеристик транзисторных TFT ключей LCD панели. На рис.1. показана вольт-амперная характеристика тонкопленочных транзисторов, из которой видно, что в процессе работы транзистора (моменты закрытия и открытия) присутствуют нелинейные участки, которые, в конечном счете будут искажать полутона отображаемых цветов и вольтконтрастную характеристику монитора. Для качественного отображения цветов эти искажения необходимо скорректировать.

BIOS видеосистемы.

Статья добавлена: 28.03.2017 Категория: Статьи по мониторам

BIOS видеосистемы. Дисплейный адаптер, как обязательный компонент PC, имеет поддержку основных функций в BIOS. BIOS (Basic Input/Output System) видеоадаптера располагается в видео-ПЗУ (Video ROM), кроме него там находятся экранные шрифты, служебные таблицы и т.п. BIOS не используется видеоконтроллером напрямую. К BIOS обращается только центральный процессор, и в результате выполнения им программ BIOS, происходят обращения к видеоконтроллеру и видеопамяти. Взаимодействие программ с графическими адаптерами осуществляется с помощью обращения к их регистрам и видеопамяти. На многих современных видеоадаптерах устанавливаются перепрограммируемые посредством электричества видео-ПЗУ (EEPROM, Flash ROM), допускающие обновление BIOS видеоадаптера пользователем с помощью специальной программы из комплекта видеоадаптера. Дисплейный адаптер, как обязательный компонент персонального компьютера, имеет поддержку основных функций в BIOS. Эти функции выполняются через вызов программного прерывания INT 10h - видеосервиса BIOS. Видеосервис позволяет установить видеорежим (BIOS Video Mode), определяющий формат экрана. Первоначально для задания номера режима отводился один байт, и режим устанавливался параметром функции “0h” INT 10h (АН=0, AL=Mode). Режимы 0-13h являются стандартными для адаптеров MDA, CGA, EGA, VGA. Режимы 14h-7Fh используются с нестандартными VGA- или SVGA-расширениями BIOS, они специфичны для конкретных моделей графических адаптеров. Позже появилось стандартизованное расширение функций видеосервиса VBE (VESA BIOS Extensions) для адаптеров VGA, SVGA и были определены новые видеорежимы с двухбайтными номерами старше 100h. Эти режимы устанавливаются параметром функции “4F02h” INT 10h (AX=4F02h, BX=VMode). В пределах возможностей установленного видеорежима видеосервис предоставляет возможности отображения информации на различных уровнях качества. Простейший для программиста телетайпный режим позволяет посылать поток символов, которые будут построчно отображаться на экране с отработкой символов возврата каретки, перевода строки, обеспечивая «прокрутку» изображения при заполнении экрана. Есть функции и для полноэкранной работы с текстом, при которой доступны и атрибуты символа. В графическом режиме имеется возможность чтения и записи пиксела с указанными координатами. Однако видеосервисом INT 10h программисты пользуются далеко не всегда, поскольку работает он довольно медленно. Существенно ускорить работу видеосервиса позволяет затенение области ROM BIOS, хранящей программный код драйверов (Video BIOS Shadowing). Однако самым быстрым способом построения видеоизображений, будет прямая работа с видеопамятью или непосредственное общение с акселератором графического контроллера.

Внешние источники питания в LCD мониторах.

Статья добавлена: 27.03.2017 Категория: Статьи по мониторам

Внешние источники питания в LCD мониторах. LCD мониторах могут применяться внутренние и внешние источники питания. Внутренний источник питания расположен в корпусе монитора и, как правило, представляет собой импульсный преобразователь, передающий переменное напряжение сети в несколько выходных шин питания постоянного тока. Отличительной особенностью LCD дисплеев с внутренним источником является наличие внешнего разъем 220В для подключения силового сетевого кабеля. Основным недостатком такой компоновки монитора является наличие внутри него высоковольтного мощного импульсного преобразователя, который может самым негативным образом влиять на работу самого монитора. В случае внешнего источника питания в комплекте вместе с монитором поставляется внешний сетевой адаптер, который представляет собой отдельный модуль преобразования переменное напряжение сети в необходимое постоянное напряжение номиналом порядка 12-24В (рис. 1). Схемотехнически он представляет собой точно такой же импульсный преобразователь, как и во внутреннем блоке питания. Подобное решение компоновки позволяет исключить из состава LCD монитора силовой каскад, что, в конечном счете повышает надежность изделия, а также качество отображаемой информации. Количество выходных шин питания колеблется от одной до трех. Типовым вариантом является формирование на выходе шин +3.3В, +5В и +12В. Назначение напряжений следующее: +5В - используется в качестве дежурного напряжения, а также для питания цифровых, аналоговых схем, логики самой LCD панели и т.д. +3.3В - напряжение питания цифровых микросхем. +12В - напряжение питания инвертора ламп задней подсветки, а также используется для питания драйверов LCD панели. В случае применения внешнего блока питания все вышеперечисленные напряжения будут формироваться из одной единственной входной шины 12-24В с помощью DC-DC преобразователей постоянного тока в постоянный ток. DC-DC преобразователь практически всегда расположен на основной управляющей плате монитора и является его составной частью. Такое преобразование может осуществляться либо с помощью схемы линейного регулятора, либо с помощью импульсного регулятора. Линейные регуляторы применяются в слаботочных цепях, а импульсные преобразователи в тех каналах, где величина тока может достигать значительных величин. Построение и реализация таких преобразователей достаточно типична и отличается в различных мониторах только количеством выходных шин на выходе и элементной базой. Преобразователи выполнены на основе импульсных понижающих преобразователей напряжений, в составе которых имеется многоканальная микросхема ШИМ, управляющая выходным силовым каскадом. Регулировка и стабилизация выходных шин выполняется с применением технологии ШИМ по цепям обратной связи. Приступая к ремонту основного преобразователя блока питания, необходимо придерживаться определенных правил и очередности диагностики блоков источника питания. Ремонт блока питания LCD монитора должен всегда производиться только после проведения предварительной диагностики, как отдельных элементов, так и всего источника питания в целом. Такая диагностика необходима с целью оценки возможных повреждений, определения неисправных элементов, исключения повторных отказов и возникновения помех при включении источника питания после проведения ремонтных работ. Как правило, большинство специалистов имеют свою методику проверки и диагностики неисправного источника, которая вырабатывается годами на собственном опыте работы. Однако даже опытным специалистам при проведении ремонтных работ стоит придерживаться приведенных ниже полезных правил, которые позволят уменьшить вероятность ошибок и повторных отказов при ремонте блока питания LCD монитора.

Советы по снижению нагрузки на глаза.

Статья добавлена: 24.03.2017 Категория: Статьи по мониторам

Советы по снижению нагрузки на глаза. Правильно организуйте освещение рабочего места. При слабом свете глаза напрягаются и болят. Умерьте яркость экрана. Буквы и цифры на экране это маленькие световые лучи, которые идут прямо в глаза. Нужно отрегулировать их контрастность, чтобы свет не был слишком ярким. Периодически в течении 2-3 мин закрывайте веки, дайте мышцам глаз отдохнуть и расслабиться. Экран монитора должен быть абсолютно чистым. Периодически и при необходимости протирайте его специальными жидкостями (сделаны они на основе изопропилового спирта), но не используйте этиловый спирт. Насчет расстояния до монитора было уже сказано выше. Уменьшать его нельзя, для того чтобы не увеличивать воздействие излучений монитора. Сильно увеличивать расстояние тоже нельзя. Если надо будет всматриваться в изображение, то это вызовет напряжение глаз. Не следует стремиться к высоким разрешениям. Для 15 дюймовых мониторов оптимальное разрешение 800 на 600 точек, для 17" - 1024 на 768. Работая на компьютере, каждый час делайте десятиминутный перерыв, во время которого посмотрите вдаль, встаньте с кресла, сделайте комплекс упражнений или просто походите. Неплохо каждые два-три часа надевать дырчатые очки, которые снимают спазм глазных мышц. Во время перерыва ни в коем случае не смотрите телепередачи! Если с монитора переключиться на телевизор толку будет мало.

ПЛАЗМЕННЫЕ ПАНЕЛИ.

Статья добавлена: 22.03.2017 Категория: Статьи по мониторам

ПЛАЗМЕННЫЕ ПАНЕЛИ. Основным достоинством плазменных панелей является их изображение. Изображение у плазменной панели мягкое, не утомляющее глаз мерцанием, но одновременно четкое, контрастное и яркое. Экран плазменной панели абсолютно плоский, поэтому нет искажений изображения. У плазменных панелей отсутствует неравномерность изображения от центра к краям экрана. Так как каждый пиксель панели является источником света, это значительно увеличивает угол обзора плазменных экранов. С помощью каждого пикселя можно получить до 16 млн. оттенков определенного цвета, благодаря чему изображение на экране становится столь сочным и реалистичным. Отсутствие мерцаний и полная безопасность — это хотя важное, но далеко не единственное преимущество "плазмы". Важным достоинством панели являются и её габариты. Благодаря технологии производства, панель с диагональю 60 дюймов (146 см) имеет толщину от 8 до 15 см. При огромной площади экрана висящая на стене панель практически не занимает места. Кроме того, плазменные экраны не “боятся” электромагнитных полей. Поэтому рядом с плазменным телевизором или монитором всегда можно спокойно устанавливать самые хорошие, мощные колонки и наслаждаться качественным звуком, не боясь повредить или исказить изображение мощным магнитным полем акустики. Отсутствие влияния электромагнитных полей дает хорошие перспективы применения плазменных мониторов в системах автоматизированного управления технологическими процессами и производством, ведь зачастую оборудование в цехах, на конвейерах и т.п. подвергается мощнейшему воздействию внешних магнитных и электрических полей. Из особенностей такого типа дисплеев стоит отметить относительно высокое энергопотребление. Чтобы зажечь один пиксель на экране плазменного экрана требуется немного электроэнергии, но матрица состоит из миллионов точек, каждой из которых приходится гореть до нескольких десятков часов подряд. Средняя панель потребляет от 300 до 600 ватт, но надо учесть и то, что площадь панели гораздо больше площади экрана обычного телевизора и монитора. Производители уже сегодня довели продолжительность работы панелей до 30000 часов и предложили довольно эффективные пути решения этой проблемы. Из-за довольно большой потребляемой мощности плазменные панели иногда ощутимо нагреваются, в связи с чем требуют охлаждения. Вентиляторы, присутствующие в конструкциях некоторых плазменных панелей, обладают низким уровнем шума, но отдельные потребители острым слухом испытывают дискомфорт от тихого шелеста вентиляторов. Для решения этой проблемы разработаны специальные модели с пассивным охлаждением, т.е. с большими радиаторами, они абсолютно бесшумны, но имеют несколько большую массу. Благодаря своим выдающимся свойствам, плазменные панели имеют широчайшую сферу применения.

Преимущества и недостатки технологии OLED.

Статья добавлена: 21.03.2017 Категория: Статьи по мониторам

Преимущества и недостатки технологии OLED. OLED или Organic Light Emitting Diode (органический светодиод) – одна из самых перспективных разработок, применение которой найдётся везде: просто для освещения, для создания собственно дисплеев или, например, подсветки LCD-панелей. Существует несколько различных по возможностям и сферах применения типов OLED: - Passive-matrix OLED (OLED с пассивной матрицей); - Active-matrix OLED (OLED с активной матрицей); - Transparent OLED (прозрачный OLED); - Top-emitting OLED (OLED с непрозрачным субстратом); - Foldable OLED (гибкий OLED); - White OLED (белый OLED). Преимущества: 1. OLED намного легче и тоньше, чем LCD и неорганические LED. При этом, они более гибкие. Например, создать ту же одежду с интегрированным LCD вряд ли удастся в обозримом будущем. 2. OLED ярче, чем LCD или LED. Поскольку слои OLED намного тоньше, чем кристаллические слои LED, можно создать по-настоящему многослойный «сэндвич» с высокой светимостью. 3. Поскольку OLED не нуждается в подсветке, как LCD, он потребляет намного меньше энергии. Это особенно важно для устройств, питающихся от батареек/аккумуляторов. 4. OLED сравнительно прост в производстве - пластиковые слои позволяют легко делать дисплеи большого размера. Аналогичных габаритов ЖК-матрицу создать достаточно сложно. 5. Поскольку OLED, в отличие от LCD, сам является источником света, он имеет большие углы обзора (170 и более градусов). Недостатки: 1. Ресурс. Хотя красных и зеленых OLED-слоев хватает на 46000-230000 часов работы, синий слой в настоящее время способен эффективно функционировать лишь около 14000 часов (в некоторых вариантах сроки работы доведены до 20000 часов и выше).. 2. Производство. Выпуск OLED пока обходится достаточно дорого, много дороже, чем LCD. 3. Вода/влага. Легко нарушает работу OLED-дисплея. Впрочем, это актуально для всех существующих технологий.

Режимы работы CrossFire.

Статья добавлена: 20.03.2017 Категория: Статьи по мониторам

Режимы работы CrossFire. Особенностью режимов работы CrossFire является то, что для CrossFire доступно всего 3 режима рендеринга: Scissor, SuperTiling, AFR. В отличие от SLI-систем свободный выбор режимов недоступен и нужный режим выбирается драйвером автоматически. Режим рендеринга Scissor. Это достаточно известный метод обработки изображения суть которого заключается в разделении кадра на две части, каждую из которых обрабатывает отдельная видеокарта. В теории кадр может делиться пропорционально мощности видеочипов установленных в ПК видеокарт. Для одинаковых карточек кадр делится в соотношении 50:50, но если одна из них более мощная, то выбирается соотношение 30:70 или 40:60. Однако, как может показаться на первый взгляд, не для всех игровых приложений такой режим будет предпочтителен. К примеру, в 3D–шутерах нижняя часть кадра мало меняется на протяжении игры, чего не скажешь о верхней. Для этого предусмотрено увеличение обрабатываемой в кадре зоны для карточки, простаивающей в данный момент времени (для расчета геометрии сцены также потребуются дополнительные ресурсы).

HDMI-разветвители ATEN VS182 и VS184.

Статья добавлена: 16.03.2017 Категория: Статьи по мониторам

HDMI-разветвители ATEN VS182 и VS184. Идеальным решением для презентаций в корпоративной, образовательной, коммерческой и подобных средах являются 2-х и 4-портовые HDMI разветвители VS182 и VS184 от ATEN. Они доступны на рынке, общий вид новых 2- и 4-портовых HDMI-разветвителей VS182 и VS184 показан на рис. 1. Тайваньская ATEN International производит 2-х и 4-х портовые HDMI разветвители - VS182 и VS184 . Эти видео разветвители с поддержкой HDMI 1.3b и HDCP 1.1 передают источник цифрового сигнала высокого разрешения на расстояние до 20 метров на два или четыре монитора одновременно. Кроме того, они поддерживают Dolby True HD и DTS HD Master Audio. При этом разветвители VS182 / VS184 отлично масштабируются, позволяя посылать сигнал на 64 монитора при каскадном подключении. VS182 и VS184 поддерживают все виды устройств HDMI (мультимедийный интерфейс высокой четкости) в качестве входного сигнала, такие как DVD и Blu-ray плееры, цифровые камеры, игровые видео приставки, спутниковые приставки, и все HDMI дисплеи, проекторы, мониторы и HD телевизоры в качестве целевого устройства. VS182 и VS184 используют стандарты 1.3b для HDMI, поддерживают HDCP (защита широкополосного цифрового контента) 1.1 и совместимы с DDC (цифровой канал данных). Они поддерживают 12-битную глубину цвета для HDMI форматов, разрешение HDMI видео до 1080p для HDTV, VGA, SVGA, SXGA, UXGA (1600x1200) и WUXGA (1920x1200) на компьютерах. VS182 и VS184 устраняют проблемы расстояний, так как они способны передать видео сигнал на дисплеи на длинные расстояния до 20 метров (24 AWG) или 15 метров (28 AWG), а расположенные на металлическом корпусе светодиоды (рис. 1) отображают состояние подключенных устройств.

Изображения трехмерных объектов на экране монитора.

Статья добавлена: 09.03.2017 Категория: Статьи по мониторам

Изображения трехмерных объектов на экране монитора. Системы виртуальной реальности и трехмерной визуализации переносят зрителя в вымышленный мир, позволяющий перемещаться в очень высоко детализированной обстановке. Такие миры реализуются посредством каркасных структур, например, стен, полов и потолков и др., на которые наносятся текстуры, представляющие собой цветные шаблоны. На плоском экране монитора высококачественные изображения трехмерных объектов могут состоять из огромного количества элементов. В программах создания трехмерной графики используется технология хранения в памяти и обработки не самих изображений, а набора абстрактных графических элементов, составляющих эти изображения. Трехмерное изображение отображаемое на экране монитора представляет собой набор отдельных групп элементов: - группы трехмерных объектов, - группы источников освещения, - группы применяемых текстурных карт, - группы (или одной) камер.

Стр. 17 из 31      1<< 14 15 16 17 18 19 20>> 31

Лицензия