Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!
Подтверждая отправку данной формы, Вы даете Согласие на обработку персональных данных в соответствии с Политикой обработки персональных данных

Статьи по мониторам

Стр. 27 из 31      1<< 24 25 26 27 28 29 30>> 31

Thunderbolt - объединит высокоскоростную передачу данных и HD-видео с помощью одного кабеля.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Thunderbolt - объединит высокоскоростную передачу данных и HD-видео с помощью одного кабеля. Технология Thun-derBolt (ранее Light Peak) - это скоростной канал для соединения видеоустройств, сетевых интерфейсов и хранилищ данных единым интерфейсом. Технологии Thunder-Bolt (Light Peak), позволяют проводить высокоскоростной обмен данными между узлами компьютера или между несколькими компьютерами. Технология Thunderbolt упрощая соединения между устройствами, создает новые, впечатляющие способы использования персональных компьютеров и ноутбуков за счет объединения высокоскоростной передачи данных и HD-видео с помощью одного кабеля. То есть один из каналов использует уже знакомый нам интерфейс PCI Express x4 для передачи данных (по сути, Thunderbolt - это прямой линк к шине PCI Express), тогда как по другому каналу посредством интерфейса DisplayPort (сам порт Thunderbolt довольно сильно похож на порт DisplayPort), передается исключительно видеосигнал. Технология Thunderbolt успешнее всего отвечает всем требованиям специалистов, профессионально работающих с HD-видео. Обработка HD-видео является одной из самых требовательных вещей при работе с компьютером. Thunderbolt Intel предлагает инновационную технологию, чтобы помочь профессионалам и потребителям работать быстрее и легче, с их растущей коллекции медиа-контента, от музыки до HD-видео. Например, видео-операторы могут использовать аудио и видео устройства с высокой пропускной способностью для захвата или микширования и получать результаты обработки в режиме реального времени с низкой задержкой и высокой точной синхронизацией. Благодаря поддержке скорости до 10 Гбит/с "тяжелые" мультимедийные файлы передаются быстрее, соответственно, меньше времени тратится на предварительный просмотр и редактирование видео. Данные также сохраняются и восстанавливаются быстрее, поэтому меньше времени тратится на доступ к архивному контенту. Для пользователей мобильных PC, например, ультратонких ноутбуков, удобство обеспечивается благодаря наличию одного разъема, что расширяет возможности использования HD дисплеев и высокоскоростных мультимедийных устройств дома и в офисе. Thundebolt дополняет другие технологии I/O, поддерживаемые Intel. Благодаря ультрабыстрой скорости передачи данных, поддержки дисплеев с высоким разрешением и совместимости с существующей технологией I/O, Thunderbolt является прорывом для всей отрасли, разработчики смогут сделать революционные вещи, используя эту технологию. Кроме того, что Thunderbolt позволяет пользователям подключать через слот Mini DisplayPort специальный адаптер, для HDMI, DVI, VGA и других высокоскоростных соединений, Thunderbolt обеспечивает поддержку оптических соединений для подключения к высокоскоростным сетям. Для сравнения - технология USB 2.0 обеспечивает максимальную скорость передачи данных в 480 Мбит/с, USB 3.0 обеспечивает скорости до 5 Гбит/с, и все это - при идеальных условиях. Но Thunderbolt может поддерживать практически любую технологию и обеспечить соединение в 10 Гбит/с. При этом через Thunderbolt можно подключить универсальный адаптер, который понесет на своем борту несколько технологий.

Драйверы со схемой вольтодобавки (светодиодная подсветка).

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Драйверы со схемой вольтодобавки (светодиодная подсветка). Светодиодная подсветка имеет значительно меньший уровень электромагнитного излучения, использование светодиодной подсветки более экологично, благодаря чему уменьшается утомляемость операторов при работе с такими мониторами. "Зажечь" светодиод несложно - достаточно подключить его в прямом включении через ограничивающий резистор к источнику питания, но этот способ крайне неэкономичен, так как на ограничивающем резисторе создается большое падение напряжения, а значит, и большие потери (кроме того, ток через светодиод и яркость его свечения при подобном включении будут крайне нестабильны). Для повышения КПД и стабильности свечения светодиодов используются драйверы на специализированных микросхемах. Микросхемы драйверов для питания сверхъярких светодиодов используются в устройствах разной сложности: светодиодные фонари, мобильные телефоны, цифровые фотоаппараты, LCD-дисплеи компьютеров и т.д. Рассмотрим в качестве типового представителя этого типа, микросхему МР1519 (рис. 1), которая представляет собой драйвер для питания четырех белых светодиодов со схемой вольтодобавки (с питанием от источника 2,5...5,5 В). Компания MPS выпускает еще две микросхемы близких к МР1519 по схемотехнике и цоколевке - MP1519L (рассчитана на работу с тремя белыми светодиодами) и MP3011 (работает с двумя белыми светодиодами).

Краткие сведения по техническим терминам, используемым разработчиками в видеосистеме.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Краткие сведения по техническим терминам, используемым разработчиками в видеосистеме. Краткие сведения по техническим терминам и интерфейсам, используемым разработчиками в видеосистеме и мониторах: DDC (Display Data Channel) - цифровой канал для идентификации дисплея и управления параметрами со стороны платы видеоконтроллера. DDI (Digital Display Interface) - цифровой дисплейный интерфейс. Обеспечивается специальным чипсетом или же однокристальным ASIC. Микросхемы DDI производят преобразование входных сигналов в сигналы управления дисплейной системой. DDL (Digital Display Link) - цифровой дисплейный интерфейс. DFP (Digital Flat Panel) - цифровой интерфейс для плоскопанельных дисплеев на базе TMDS, разработанный VESA. Digital Packet Video Link (Digital PV) - видеоинтерфейс для дисплеев высокого разрешения UXGA, разработанный фирмой Toshiba. DMI (Digital Monitor Interface) - цифровой дисплейный интерфейс. GVIFTM (Gigabit Video InierFace) - стандарт цифрового дисплейного интерфейса, разработанный фирмой Sony. Обеспечивает пропускную способность до 1,5 Гбит/с. Такой полосы достаточно даже для передачи видеоданных в формате XGA. При частоте кадров 60 Гц и использовании 24 бит для кодирования цвета каждого пиксела получаем: 1024x768x24x460 = 1,13 Гбит/с. LDI (LVDS Display Interface) - для расширения пропускной способности ранее разработанного интерфейса LVDS фирма National Semiconductor удвоила число линий данных до 8 пар проводников. За счет введения избыточного кодирования в данном интерфейсе улучшен баланс по постоянному току, а стробирование данных производится каждым фронтом тактового сигнала. Поддерживаются скорости передачи до 112 МГц. Торговая марка интерфейса OpenLDI. Mini LVDS - внутренний последовательно-параллельный интерфейс ЖК-дисплея. Соединяет декодирующий контроллер видеоданных на плате управления с драйверами столбцов дисплея. Используется в видеочипсетах Texas Instruments. MPL (Mobile Pixel Link) - дисплейный интерфейс для мобильных устройств нового поколения, разработанный фирмой National Semiconductor. В последовательном интерфейсе MPL используются два сигнала — данные и синхронизация. RSDS (Reduced Swing Differential Signaling) - дифференциальная шина с уменьшенным уровнем ЭМИ, используемая для реализации интерфейса с жидкокристаллическим экраном (ЖКЭ). Стандарт разработан фирмой National Semiconductor и по своей сути напоминает LVDS. Уровни сигналов 200 мВ, ток передатчика 2 мA на линию.

Подсветка в ЖК панелях ноутбуков (CCFL).

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Подсветка в ЖК панелях ноутбуков (CCFL). В жидкокристаллических (ЖК) панелях большого числа используемых ноутбуков традиционным вариантом является подсветка электролюминесцентными лампами холодного свечения или лампами с холодным катодом (CCFL, англ. Cold Cathode Fluorescent Lamp). В большинстве таких ноутбуков используется одна лампа, установленная снизу, либо лампа в форме буквы "Г". "Пуск" лампы, а также ее питание в рабочем режиме обеспечивает DC/AC-конвертор (инвертор). Инвертор осуществляет запуск CCFL-лампы напряжением до 1000 В, а ее стабильное свечение в течение длительного времени обеспечивается рабочим напряжением от 500 до 800 В (в зависимости от размера экрана). Для подключения ламп к инверторам используется емкостная схема. В лампах создаются условия для управляемого тлеющего разряда. Так как рабочая точка находится на пологой части кривой, это позволяет добиться стабильного свечения ламп на протяжении длительного времени, а также позволяет эффективно управлять яркостью. Любой инвертор выполняет следующие стандартные функции: - преобразует постоянное напряжение 5-20 В в высоковольтное переменное напряжение; - регулирует и стабилизирует ток CCFL-лампы; - обеспечивает регулировку яркости; - согласует выходной каскад инвертора с входным сопротивлением CCFL-лампы при запуске и в рабочем режиме; - обеспечивает защиту схемы от короткого замыкания в нагрузке и токовой перегрузки. Типовая блок-схема инвертора питания CCFL-ламп в ноутбуках показана на рис. 1.

LCD-дисплеи со светодиодной подсветкой.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

LCD-дисплеи со светодиодной подсветкой. На рис. 1 показана конструкция цветного LCD-дисплея со светодиодной подсветкой. Дисбаланс яркости светодиодов разных цветов можно скомпенсировать подборам числа светодиодов каждого цвета в массиве или регулировкой тока по каждому цвету. Для получения равномерного распределения света от точечных источников с малыми оптическими потерями используются рассеиватели 1 и 2 (на рис. 1), которые выполнены на основе линз Френеля и позволяют при очень малой толщине конструкции управлять подмассивами светодиодов обычными токовыми транзисторными ключами. Сигналы управления токовыми ключами формируются на основе сигналов субкадровой развертки частотой 180 Гц (рис. 2). На рис. 3 по¬казаны временные соотношения для фаз последовательной цветовой модуляции. Рис. 3 На рис. 4 показана структура управления ЖК-дисплеем с последо¬вательной цветовой модуляцией. Этот ме¬тод подсветки пока имеет серьезный недостаток – фликкер (глаз за¬мечает мерцание яркости, возникающее в процессе развертки и импульсной подсветки). Фликкер можно уменьшить, повышая частоту субкадровой развертки, однако для этого необходимо обеспечивать и большее быстродействие ЖК-ячеек. Решение этой проблемы существенно усложняет и удорожает стоимость дисплея. И все это из-за того, что фазы протекают последовательно во времени, а самая важная для нашего зрения фаза, в течение которой и производится полезная модуляция по цвету и яркости, занимает слишком малую долю времени. Поэтому решили увеличить полезное время модуляции за счет совмещения прохождения фаз по времени. Для этого экран разбили на секторы (сектор – это несколько строк) и сделали источник подсвета по секторам экрана с возмож¬ностью раздельного включения и выключения секторов-линеек. Теперь можно, не дожидаясь, пока закончит¬ся полная загрузка кадра, произво¬дить посекторное включение той части экрана, для которой процесс релаксации ЖК-ячеек уже завершился. Таким образом создается «волна» подс¬вета, бегущая следом за загрузкой (разверткой) данных изображения по кадру (на рис. 5 показана структура этого варианта динамической светодиодной подсветки LCD-дисплея).

Что такое DirectX?

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Что такое DirectX? Это набор специальных API, которые предоставляют работающей программе прямой доступ к аппаратной части компьютера, обеспечивая наивысшее быстродействие при выводе графики, звука, получения данных от устройств ввода и т. д. Библиотека создавалась исключительно для игр, т. к. именно они требуют от аппаратных средств все 100% производительности. Позднее, с выходом новых версий, DirectX нашёл применение и в мультимедиа-области. Компоненты DirectX обеспечивают не только прямой доступ к устройствам компьютера: они избавляют программиста от тяжелого труда программирования на языке Assembler, решают проблему с драйверами устройств, незаменимы при создании трёхмерных и сетевых игр. До появления DirectX хороших сетевых игр было не так уж много по причине трудности их программирования. Уже в версии DirectX 8.1, библиотека полностью обеспечивала разработчика всем необходимым инструментарием для разработки качественных игр, поддерживала все современные аппаратные средства и в свое время стала де-факто стандартом в игровой индустрии игр для персонального компьютера.

Режим SMM и управление энергопотреблением мониторов.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Режим SMM и управление энергопотреблением мониторов. Монитор является одним из основных потребителей электроэнергии. Современный цветной монитор потребляет около 80 Вт. Международная организация по защите окружающей среды ЕРА (Environmental Protection Agency) выдвинула программу энергосбережения Energy Star, на которую VESA откликнулась разработкой для управления энергопотреблением системой DPMS (Display Power-Ma¬nagement Signaling). Для мониторов определены следующие режимы потребления: On - активная (нормальная) работа. Для 15" монитора типовое потребление - 80 Вт. Stand-by - отключение видеосигналов и снижение яркости до минимума, при этом потребление монитора снижается примерно на 20%. Из этого режима в нормальный (On) монитор переходит быстро (около секунды). Поддержка состояния Stand-by не является обязательной для всех мониторов. Для 15" монитора типовое потребление — 60 Вт. Syspend - отключение строчной развертки, накала и высокого напряжения кинескопа, что снижает потребление на 70%. Переход в режим On занимает около 15 секунд. Для 15" монитора типовое потребление менее 15 Вт. Off - отключение всех схем монитора, кроме блока DPMS, потребление снижается до единиц ватт. Переключение в нормальный режим займет около 30 секунд (как включение «холодного» монитора). Если в этом режиме обесточивается и блок DPMS, то монитор можно будет включить только вручную (нажатием кнопки). Для управления энергопотреблением монитора в соответствии со стандартом VESA DPMS (Display Power Management Signaling) используются сигналы кадровой и строчной синхронизации V.Sync и H.Sync.

ЖК-дисплеи или OLED?

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

ЖК-дисплеи или OLED? Дисплейные технологии продолжают развиваться и совершенствоваться. Основные векторы их развития - снижение потребления дисплеев, увеличение уровня интеграции и широкое использование гибридных технологий. Продолжается внедрение технологий объемного изображения и проекционных технологий в секторе мобильных устройств. Доминирующие позиции на рынке пока по-прежнему удерживают ЖК-дисплеи. Последние достижения демонстрируют высокий потенциал этой технологии как в секторе большеформатных дисплеев, так и в секторе мобильных устройств. Проекционные технологии на основе MEMS имеют хорошие перспективы. За последние годы удалось достичь несомненного прогресса в области дисплейной технологии OLED. OLED (Organic Light-Emitting Diode - органический светоизлучающий диод) - это диод, изготовленный из органических соединений, который излучает свет при пропускании через него тока. В настоящий момент применяются три основных схемы реализации цветных OLED: схема с раздельными цветными эмиттерами; схема WOLED + CF (белые эмиттеры + цветные фильтры); схема с конверсией коротковолнового излучения. Самый первый и логичный вариант - с раздельными эмиттерами. Этот вариант и самый эффективный с позиции использования энергии. Однако он реализуется с определенными технологическими трудностями. Второй вариант проще в части создания белых эмиттеров, одинаковых для всех трех компонентов цвета, однако значительно проигрывает по эффективности использования энергии первому варианту. В третьем варианте (Color Changing Media - CCM) применяются голубые эмиттеры и люминесцентные материалы для преобразования коротковолнового голубого излучения в длинноволновое (красный и зеленый).

Сенсорные экраны мониторов.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Сенсорные экраны мониторов. Сенсорный экран (от англ. touch screen) - это координатное устройство, позволяющее путем прикосновения (пальцем, стилусом и т.п.) к области экрана монитора производить выбор необходимого элемента данных, меню или осуществлять ввод данных в различных компьютерных системах. Сенсорные экраны наиболее пригодны для организации гибкого интерфейса, интуитивно понятного даже далеким от техники пользователям. С распространением карманных, планшетных компьютеров, устройств для чтения электронных книг и различных терминалов, сенсорные экраны стали такими же привычными, как кнопка и колесо. За прошедший период развития сенсорных экранов было разработано несколько типов этих устройств ввода, основанных на различных физических принципах, которые используются для определения места касания. В настоящее время наибольшее распространение получили два типа дисплеев — резистивные и емкостные. Помимо этого различают экраны, способные регистрировать одновременно несколько нажатий (Multitouch) или только одно. Сенсорные экраны используют всего четыре основных базовых принципа построения: резистивный, емкостный, акустический и инфракрасный (разные источники выделяют шесть, а иногда и семь технологий, по которым производятся сенсорные экраны). Сенсорные технологии всегда требуют, чтобы поверхность LCD монитора либо распознала прикосновение или же наоборот - защитила от касания. Изготовители экранов упорно трудятся, чтобы представить яркие и истинные цветные изображения.

Стандарт Unicode.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Стандарт Unicode. Стандарт Unicode для кодировки символов был предложен некоммерческой организацией Unicode Consortium. Для представления каждого символа в этом стандарте используются два байта, что позволяет закодировать очень большое число символов из разных письменностей. В документах Unicode могут соседствовать русские, латинские, греческие буквы, китайские иероглифы и математические символы. Кодовые страницы при использовании Unicode становятся ненужными. Коды в Unicode разделены на несколько областей. Область с кодами от 0000 до 007F содержит символы набора Latin 1 (младшие байты соответствуют кодировке ISO 8859-1). Далее идут области, в которых расположены знаки различных письменностей, а также знаки пунктуации и технические символы; часть кодов зарезервирована для использования в будущем. Символам кириллицы выделены коды в диапазоне от 0400 до 0451. Для работы с документами Unicode нужны соответствующие шрифты. Как правило, файл шрифта Unicode содержит начертания не для всех символов, определенных в стандарте, а лишь для символов из некоторых областей. Кодировка формата Unicode. Unicode - это универсальная международная кодировка, которая предусматривает выделение для набора символов каждого языка определенной непрерывной последовательности двоичных чисел. Символы Unicode хранятся в виде 16-разрядных чисел, что позволяет представить свыше 60 тысяч различных символов, но на каждый символ расходуется два байта памяти. Набор символов латинского алфавита (то есть символов английского языка) и математические символы считаются в Unicode основными и размещаются в диапазоне 0020h-007Eh. Преобразование латинских символов из формата Unicode в ASCII-код сводится к простому отсечению старшего байта символа. Символы русского языка (Cyrillic) размещаются в диапазоне 0410h-044Fh (см. рис.1 и рис.2).

Ощущение цвета человеком определяет принципы построения цветных мониторов компьютеров.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Ощущение цвета человеком определяет принципы построения цветных мониторов компьютеров. Ощущение цвета создается при условии преобладания в цвете волн определённой длины. Но если интенсивность всех волн одинаковая, то цвет воспринимается как белый или серый. Не излучающий волн предмет воспринимается как чёрный. Эти цвета называются ахроматическими. Хроматическими же называются все остальные цвета. Как же глаз улавливает волны? Ощущение цвета складывается в мозге человека, куда идет сигнал из глаза. В глаз же свет попадает, проникнув через роговую оболочку и зрачок, «регистрируясь» на сетчатке, на которой расположены нервные клетки – нейроны с двумя типами рецепторов. Один тип рецепторов – тонкие и длинные – называются палочками. Они ответственны за чёрно-белое зрение в условиях слабой освещённости и не задействованы в условиях полной освещённости. Но так как в процессе эволюции человек выбрал дневной образ жизни, палочек у него ровно столько, чтобы в темноте он мог видеть только контуры предметов. А у охотящихся ночью животных количество и чувствительность палочек позволяет ориентироваться в темноте не хуже, чем днём. За дневное и цветное зрение отвечает другой тип рецепторов. Толстые и короткие колбочки регистрируют информацию о цвете благодаря находящимся в них пигментным клетках. Пигменты в свою очередь делятся на 3 вида – эпитролаб, хлоролаб, цианолаб – каждый из которых чувствителен к одному из трёх основных цветов – красному, зелёному или синему, улавливая волны определённой длины. Длина волны в диапазоне 600–700 нм воспринимается как красный цвет, 500–600 – как зеленый, 400–500 – как синий. Получая сигнал, нейроны отправляют электрические импульсы в мозг, где из информации о пропорциях и интенсивности основных цветов складывается полноцветная картина мира с огромным количеством оттенков. Следовательно, всё, что нас окружает, можно описать, используя всего три основных цвета. Это явление используется, например, в телевизорах и ЭЛТ-мониторах – вся плоскость экрана представляет собой крошечные ячейки, в каждой из которых есть 3 луча – красный, зеленый и синий, образующих в сложении цветную точку. Этот принцип синтеза цвета также используется в сканерах и цифровых фотоаппаратах. Для его обозначения и используется аббревиатура RGB (Red Green Blue).

Методы построения светодиодной подсветки цветных LCD-мониторов

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Традиционный способ построения цветного изображения на матричных LCD-дисплеях основан на использовании встроенной системы цветных фильтров и задней подсветки белого цвета. С появлением сверхъярких светодиодов синего, красного и зеленого свечения эффективность в дисплеях многих производителей все чаще стала использоваться светодиодная подсветка, сначала белого свечения, а затем и «трехцветная».

Стр. 27 из 31      1<< 24 25 26 27 28 29 30>> 31

Лицензия