Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по блокам питания

Стр. 9 из 28      1<< 6 7 8 9 10 11 12>> 28

Принципы построения и варианты реализации импульсных блоков питания (ИБП).

Статья добавлена: 23.01.2019 Категория: Статьи по блокам питания

Принципы построения и варианты реализации импульсных блоков питания (ИБП). В современной электронной технике чаще приходится встречаться с двумя видами источников питания: импульсные блоки питания и линейные блоки питания. Лидирующее положение занимают импульсные блоки питания (ИБП). Линейные блоки питания имеют много полезных свойств таких как: простота, низкие выходные пульсации и шум, превосходные значения нестабильности по напряжению и току, быстрое время восстановления. Главным недостатком является невысокая эффективность, невысокий КПД. ИБП широко применяются из-за высокого КПД, малых габаритов и массы, высокой удельной мощности. Все перечисленные свойства ИБП получили благодаря применению ключевого режима работы силовых элементов. Малую массу и габариты ИБП получили, прежде всего за счет исключения из схемы мощного низкочастотного силового трансформатора работающего на частоте 50 Гц. Вместо понижающего трансформатора используется высокочастотный трансформатор, работающий на частоте несколько десятков кГц., что позволяет уменьшить объем и массу электромагнитных элементов по сравнению с эквивалентными линейными источниками, тем самым повысить удельные объемно-массовые показатели. К недостаткам ИБП относятся такие характеристики как сложность схемы, наличие высокочастотных шумов и помех, увеличение пульсаций выходного напряжения, большое время выхода на рабочий режим. При сравнении характеристик, можно сказать, что КПД импульсных источников питания увеличивается по сравнению с источником с понижающим трансформатором в отношении 2:1, удельная мощность увеличивается в 5 раз. Существенным недостатком ИБП является большое количество электронных компонентов, и как правило восстанавливать эти блоки приходится чаще. Во время проведения ремонта и локализации неисправности важное значение имеет наличие опыта и понимание происходящих процессов во время нормальной работы. без этих знаний полноценный ремонт невозможен. Существует несколько основных вариантов построения ИБП. Обобщенная структурная схема ИБП представлена на рис 1, она состоит из: - входного помехоподавляющего фильтра; - сетевого выпрямителя; - сглаживающего емкостного делителя; - ключевого транзисторного преобразователя; - импульсного силового трансформатора; - вторичных выпрямителей; - выходных помехоподавляющих фильтров; - схемы управления.

Линейные и импульсные стабилизаторы контроллеров зарядки Li-ion аккумуляторов.

Статья добавлена: 16.01.2019 Категория: Статьи по блокам питания

Линейные и импульсные стабилизаторы контроллеров зарядки Li-ion аккумуляторов. Одним из обязательных компонентов современных портативных устройств является мало в чем изменившийся за последние годы литиево-ионный аккумулятор, отличающийся наилучшими показателями среди ряда других химических источников электроэнергии, предназначенных для использования в портативных приложениях. Бесспорно, емкость его выросла, существенно улучшены и другие характеристики, что позволило расширить функциональные возможности портативных устройств, однако базовый принцип его работы и алгоритм зарядки мало в чем изменились.

MOSFET-транзисторы (ликбез).

Статья добавлена: 14.01.2019 Категория: Статьи по блокам питания

MOSFET-транзисторы (ликбез). В качестве электронного ключа импульсных преобразователей напряжения питания компонентов материнских плат всегда используется пара полевых n-канальных МОП-транзисторов (MOSFET-транзисторы).

Проблемы электропитания импортного оборудования компьютерных систем.

Статья добавлена: 14.12.2018 Категория: Статьи по блокам питания

Проблемы электропитания импортного оборудования компьютерных систем. Проблемы электропитания импортного оборудования компьютерных систем ощущается особенно остро так как обеспечение нормальным питанием рассматривается, естественно, с позиций того окружения, в котором работает пользователь зарубежный. Но в российских электросетях более высокое напряжение питания 220 В (колеблется в пределах 210 - 230 В), иная частота сети - 50 Гц против 60 Гц. Такое отличие частот может вызвать повышенную нагрузку на трансформаторы блоков питания. Большой проблемой является для нас небрежный, а часто и неквалифицированный монтаж сети. Только сравнительно недавно электропроводку стали выполнять трехжильным проводом, в котором кроме нейтрали и фазы присутствует еще и земля (куда эта земля будет подключена это отдельный вопрос).

Неисправности блока питания, проблемы и их решение (ликбез).

Статья добавлена: 26.10.2018 Категория: Статьи по блокам питания

Неисправности блока питания, проблемы и их решение (ликбез). Блок питания не только вырабатывает необходимое для работы узлов компьютера напряжение, но и приостанавливает функционирование системы до тех пор, пока величина этого напряжения не достигнет значения, достаточного для нормальной работы (блок питания не позволит компьютеру работать при "нештатном" уровне напряжения питания). В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power_Good (питание в норме). Если такой сигнал не поступил, компьютер работать не будет. Напряжение сети может оказаться слишком высоким (или низким) для нормальной работы блока питания, и он может перегреться. В любом случае сигнал Power_Good исчезнет, что приведет либо к перезапуску, либо к полному отключению системы. Если ваш компьютер не подает признаков жизни при включении, но вентиляторы и двигатели накопителей работают, то, возможно, отсутствует сигнал Power_Good. О неисправности блока питания можно судить по многим признакам. Например, сообщения об ошибках четности часто свидетельствуют о неполадках в блоке питания. Это может показаться странным, поскольку подобные сообщения должны появляться при неисправностях ОЗУ. Однако связь в данном случае очевидна: микросхемы памяти получают напряжение от блока питания, и, если это напряжение не соответствует определенным требованиям, происходят сбои. Нужен некоторый опыт, чтобы достоверно определить, когда причина этих сбоев состоит в неправильном функционировании самих микросхем памяти, а когда скрыта в блоке питания. Часто встречающиеся проблемы, возникающие из-за неисправности блока питания:

DIGI+ - это цифровая система питания (стандарт в управлении питанием ключевых компонентов ПК). Технология DIP.

Статья добавлена: 18.12.2018 Категория: Статьи по блокам питания

DIGI+ - это цифровая система питания (стандарт в управлении питанием ключевых компонентов ПК). Технология DIP. Цифровой модуль VRM в системе питания ASUS DIGI+ представляет собой программируемый микропроцессор, который полностью соответствует требованиям спецификации Intel VRD12 и обеспечивает качество электропитания, недостижимое для аналоговых решений. Цифровая система питания, работающая по схеме 12+2, интеллектуально регулирует уровень ШИМ-сигнала и частоту модуляции, обеспечивая удвоенную точность настройки. В отличие от предыдущих версий спецификаций VRD, Intel VRD12 предусматривает использование цифровых сигналов (SVID) в схеме управления питанием процессора. ASUS DIGI+ работает как цифровой контроллер, обрабатывающий запросы на питание (SVID) от центрального процессора обеспечивая высокое быстродействие схемы управления параметрами питания. За счет отсутствия цифро-аналогового преобразования эта схема работает быстрее, чем предыдущие решения. Материнские платы ASUS получили в свой арсенал новую современную технологию DIP (Dual Intelligent Processors), что в буквальном переводе означает «двойные интеллектуальные процессоры». Действительно, DIP состоит из двух компонентов (рис. 1): 1. TPU - TurboV Processing Unit- разгонный микропроцессор. 2. EPU - Energy Processing Unit- энергосберегающий микропроцессор. Концепция DIP(Dual Intelligent Processors) заключается в общей оптимизации системы в области энергетической эффективности, производительности и удобства использования. Микропроцессоры DIP не зависят от центрального процессора и способны в полной мере контролировать работу системы, раскрывая её максимальный потенциал. И самое главное - всё это происходит безопасно и в автоматическом режиме, что даёт возможность даже неопытному пользователю получить от своего компьютера всё, на что тот способен.

Входные цепи импульсных источников питания.

Статья добавлена: 28.06.2018 Категория: Статьи по блокам питания

Входные цепи импульсных источников питания. Один из недостатков импульсных преобразователей энергии это то, что они являются источником высокочастотных помех, проникающих в первичную сеть переменного тока. Это, в свою очередь, может приводить к нестабильной работе другого оборудования, подключенного к той же фазе первичной сети, что и импульсный источник. В связи с этим, абсолютно любой блок питания должен иметь в своем составе входные помехоподавляющие цепи, обеспечивающие его защиту от помех из первичной сети, а также защиту первичной сети от высокочастотных помех импульсного источника. Кроме того, эти цепи могут выполнять функции по защите от высоких напряжений и больших токов. Переменный ток сети на первом этапе преобразования должен быть выпрямлен с помощью диодного моста. На этот диодный мост переменный ток подается через сетевой выключатель, сетевой предохранитель, терморезистор с отрицательным температурным коэффициентом сопротивления (ТКС) и помехоподавляющий фильтр. В подавляющем большинстве источников питания построение входных цепей одинаково, и такая типовая схема входных цепей приводится на рис.1.

Источник питания принтера (пример).

Статья добавлена: 25.06.2018 Категория: Статьи по блокам питания

Источник питания принтера (пример). Источник питания представляет собой импульсный источник, преобразователь (инвертор) которого выполнен по однотактной схеме (рис.1). Входные цепи источника обеспечивают защиту от помех, токовых бросков и бросков входного напряжения, подаваемого на разъем INL101. В составе входных цепей можно отметить кнопку включения питания SW101, токовый предохранитель FU101, варистор VZ101 (470В) для защиты от повышенного входного напряжения и терморезистор TH1 с отрицательным ТКС для защиты диодного моста от токового броска в момент включения. Входные цепи имеют типовое для импульсного источника питания построение. Выпрямление переменного тока сети осуществляет диодный мост D101.Импульсный преобразователь, работающий по методу широтно-импульсной модуляции (ШИМ) представлен интегральной микросхемой IC501. Эта микросхема включает в себя и ШИМ-контроллер и мощный ключевой транзистор, коммутирующий первичную обмотку (конт.3 - конт.4) импульсного трансформатора. Запуск микросхемы осуществляется от выпрямленного напряжения, снимаемого с диодного моста через резистивный делитель R542, R541, R544, R545, R540, R501. Питание микросхемы в рабочем режиме осуществляется цепью подпитки: R505, D502, C503. В качестве источника энергии цепь подпитки использует импульсную ЭДС, снимаемую с вторичной обмотки трансформатора (конт.1 – конт.2).Токовая защита преобразователя осуществляется токовым датчиком R508, сигнал от которого подается на конт.11 (OC) микросхемы IC501.Стабилизация выходных напряжений осуществляется методом ШИМ по сигналу обратной связи, подаваемому на конт.5 (CONT) микросхемы IC501. Сигнал обратной связи передается через оптопару PC501, ток светодиода которой управляется микросхемой регулируемого стабилизатора IC504. Сигнал обратной связи пропорционален выходным напряжениям +5В и +24В, которые подаются на вход IC504.Блокировка микросхемы ШИМ-контроллера IC501 может осуществляться подачей сигнала “высокого” уровня на ее входной конт.7 (CD). Сигналом на этом контакте управляет оптопара защиты от аварийных режимов источника питания – PC502. Блокировка осуществляется в трех случаях: - превышение напряжения в канале +5В (стабилитрон ZD502); - превышение напряжения в канале +24В (стабилитрон ZD505); - превышение тока в канале +5В. Цепь защиты от превышения тока в канале +5В можно еще назвать цепью защиты от короткого замыкания. Для определения величины тока канала +5В используются токовые датчики – R514 и R513. Компаратор тока – микросхема IC302-1 (типа HA17324), управляющая транзистором Q501.

Проверка исправности полевого транзистора.

Статья добавлена: 22.06.2018 Категория: Статьи по блокам питания

Проверка исправности полевого транзистора. Рассмотрим основные характеристики N-канального полевого транзистора (ПТ). Различных параметров важных, и не очень, у полевых транзисторов достаточно много. Но с практической точки зрения ограничимся рассмотрением лишь необходимых нам параметров: - Vds - Drain to Source Voltage - максимальное напряжение сток-исток; - Vgs - Gate to Source Voltage - максимальное напряжение затвор-исток; - Id - Drain Current - максимальный ток стока; - Vgs(th) - Gate to Source Threshold Voltage - пороговое напряжение затвор-исток при котором начинает открываться переход сток-исток; - Rds(on) - Drain to Source On Resistance - сопротивление перехода сток-исток в открытом состоянии; - Q(tot) - Total Gate Charge – полный заряд затвора. Параметр Rds(on) может указываться при разных напряжениях затвор-исток, как правило это 10 и 4.5 вольта, это важная особенность которую нужно обязательно учитывать. Максимальное напряжение "сток-исток", Vds - максимальное мгновенное рабочее напряжение. Продолжительный ток стока, Id - максимальный ток, который может проводить MOSFET, обусловленный температурой перехода. Максимальный импульсный ток стока, Idm - больше, чем Id и определен для импульса заданной длительности и рабочего цикла. Максимальное напряжение "затвор-исток", Vgs - максимальное напряжение, которое может быть приложено между затвором и истоком без повреждения изоляции затвора. Кроме того, имеют место: пороговое напряжение затвора, Vt {Vth, Vgs}; Vt - минимальное напряжение затвора, при котором транзистор включается. При проверке ПТ чаще всего пользуются обычным стрелочным омметром (предел х100). Для прозвонки подойдет обычный стрелочный омметр (но, цифровым прибором в режиме контроля р-n-переходов это делать более удобно). При проверке сопротивления между истоком и стоком надо обязательно не забыть снять заряд с затвора после предыдущих измерений (кратковременно замкните его с истоком), а то можно получить неповторяющийся результат.

Замена блока питания компьютера.

Статья добавлена: 13.06.2018 Категория: Статьи по блокам питания

Замена блока питания компьютера. Требования, предъявляемые к высококачественным устройствам, очень жесткие и все блоки питания им должны соответствовать. Для оценки качества блока питания используются различные критерии. Многие потребители при покупке компьютера пренебрегают значением источника питания, и поэтому некоторые сборщики персональных компьютеров сокращают расходы на него. Ведь не секрет, что гораздо чаще цена компьютера увеличивается за счет дополнительной памяти или жесткого диска большей емкости, а не за счет более совершенного источника питания. При замене блока питания компьютера (или покупке) необходимо обращать внимание на ряд важных для надежной работы системы параметров источника питания:

Варисторы - средство защиты радиоэлектронной аппаратуры.

Статья добавлена: 26.04.2019 Категория: Статьи по блокам питания

Варисторы - средство защиты радиоэлектронной аппаратуры. Надежность работы радиоэлектронной аппаратуры во многом определяется качеством питающих электрических сетей, в которых могут иметь место перенапряжения длительностью от сотен миллисекунд до нескольких секунд, провалы напряжения длительностью до десятков миллисекунд, пропадания (отсутствие напряжения более одного периода) и так далее. По статистике на перепады напряжения приходится 12%, на перенапряжение 2%, на провалы напряжения 57%, высоковольтные выбросы 16% и на высокочастотные шумы приходится 13%. Особенно опасны высоковольтные импульсы амплитудой до не¬скольких киловольт и длительностью от десятков наносекунд до сотен микросекунд. Именно они могут приводить к серьезным сбоям электронной аппаратуры и выходу ее из строя, а также быть причиной пробоя изоляции проводов и даже их возгорания. Импульсы напряжения, которые можно отнести к внешним сетевым помехам, возникают в различных цепях аппаратуры, в первую очередь, в проводах питания. Они могут наводиться электромагнитными импульсами искусственного происхождения от передающих радиостанций, высоковольтных линий электропередач, сетей электрифицированных железных дорог, электросварочных аппаратов. Идентифицировать и систематизировать причины таких помех практически невозможно. Однако для бытовых электрических сетей напряжением 220В приняты следующие ориентировочные параметры внешних импульсных напряжений: амплитуда - до 6 кВ; частота - 0.05...5 МГц; длительность - 0.1...100 мкс. Они могут быть естественного происхождения и наводиться мощными грозовыми разрядами. Они могут создаваться статическим напряжением, разряд которого достигает 25 кВ. Высоковольтные импульсы способны возникать и в самой аппаратуре при ее функционировании в результате переходных процессов, при срабатывании электромагнитов, размыкании контактов реле, коммутации реактивных нагрузок и так далее. Наибольшую угрозу представляют импульсы, возникающие при отключении индуктивной нагрузки. По указанным причинам радиоэлектронная аппаратура должна быть защищена от высоковольтных импульсных помех. В настоящее время для защиты радиоэлектронной аппаратуры от внешних импульсных воздействий применяются различные виды экранировки, RC- и LC-фильтры, газоразрядные приборы (разрядники) и полупроводниковые ограничители напряжения. Разрядники не обладают необходимым быстродействием, а быстродействующие полупроводниковые ограничители напряжения, с высокой нелинейностью вольтамперной характеристики не способны рассеивать большую мощность из-за малого объема p-n-перехода. Это ограничивает величину допустимого тока в импульсе, протекающего через прибор. Наиболее эффективным средством защиты аппаратуры от любых импульсных напряжений признаны оксидно-цинковые варисторы. Варисторы - это нелинейные резисторы, сопротивление которых зависит от приложенного напряжения. Отличительной чертой варистора является двухсторонняя симметричная и резко выраженная нелинейная вольтамперная характеристика (рис. 1).

Преимущества твердотельных конденсаторов.

Статья добавлена: 03.04.2019 Категория: Статьи по блокам питания

Преимущества твердотельных конденсаторов. Твердотельные конденсаторы Solid CAP (рис. 1) стали основными в системных платах класса high end, обеспечивая, благодаря своей алюминиевой сердцевине, низкое последовательное сопротивление (ESR), а также 10-летний срок службы. Эти конденсаторы обладают непревзойденной стабильностью и позволяют более эффективно использовать энергию, выделяя меньше нежелательного тепла и снижая потенциальный риск аварийного вытекания жидкости, характерного для старых электролитических конденсаторов. Использование твердотельные конденсаторы Solid CAP устранило проблему взрывающихся конденсаторов и обеспечило колоссальное увеличение срока службы.

Стр. 9 из 28      1<< 6 7 8 9 10 11 12>> 28

Лицензия