Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Ремонт ПК

Стр. 11 из 61      1<< 8 9 10 11 12 13 14>> 61

Подсистема ME, ISH, IE, и BMC (ликбез).

Статья добавлена: 17.06.2021 Категория: Ремонт ПК

Подсистема ME, ISH, IE, и BMC (ликбез). Начиная с PCH 100-й серии компания Intel полностью переработала эту микросхему. Был осуществлен переход на новую архитектуру встроенных микроконтроллеров - с ARCompact компании ARC на x86. За основу был выбран 32-битный микроконтроллер Minute IA (MIA), который использовался в микрокомпьютерах Intel Edison и SoC Quark. Он основан на дизайне весьма старого, скалярного микропроцессора Intel 486 с добавлением системы команд (ISA) от процессора Pentium. Однако для PCH компания выпускает данное ядро с применением 22-нм полупроводниковой технологии, получая высокую энергоэффективность микроконтроллера. Но теперь таких ядер в PCH 100-й серии три: Management Engine (ME), Integrated Sensors Hub (ISH) и Innovation Engine (IE). Последние два могут активироваться и деактивироваться в зависимости от модели PCH и целевой платформы, а ME-ядро работает всегда. Подсистема Intel ME (Intel Management Engine). Intel Management Engine - это закрытая технология, которая представляет собой интегрированный в микросхему Platform Controller Hub (PCH) микроконтроллер с набором встроенных периферийных устройств. Именно через PCH проходит почти все общение процессора с внешними устройствами, следовательно Intel ME имеет доступ практически ко всем данным на компьютере и возможность исполнения стороннего кода. При инициализации системы Intel® Management Engine загружает свой код из флэш-памяти системы. Это позволяет Intel® Management Engine работать до запуска основной операционной системы. Для хранения данных во время выполнения процессор управления Intel® имеет доступ к защищенной области системной памяти (в дополнение к небольшому количеству встроенной кэш-памяти для более быстрой и эффективной обработки). Intel® ME выполняет различные задачи, пока система находится в спящем режиме, во время процесса запуска и когда ваша система работает. Без ME не возможна загрузка процессора. ME имеет полный доступ к памяти (без всякого ведома на то родительского ЦПУ); ME имеет полный доступ к TCP/IP стеку и может посылать и принимать пакеты независимо от операционной системы, обходя таким образом её файрволл. ME имеет свой MAC-адрес и IP-адрес для своего дополнительного интерфейса, с прямым доступом к контроллеру Ethernet. Каждый пакет Ethernet-траффика переадресуется в ME даже до достижения операционной системы хоста, причём такое поведение поддерживается многими контроллерами, настраиваемыми по протоколу MCTP. Integrated Sensors Hub (ISH). Концентратор датчиков - это микроконтроллер/сопроцессор/DSP, который помогает интегрировать данные от различных датчиков и обрабатывать их. Эта технология может помочь разгрузить эти задания от основного центрального процессора, тем самым экономя потребление батареи и обеспечивая повышение производительности. Начиная с Cherrytrail, несколько поколений процессоров Intel предлагают концентратор датчиков. Возможности интегрированного сенсорного концентратора Intel:

Компьютеры для бизнеса с технологией Intel vPro (ликбез).

Статья добавлена: 02.06.2021 Категория: Ремонт ПК

Компьютеры для бизнеса с технологией Intel vPro (ликбез). В современных корпоративных сетях использование удалённого доступа для настройки и конфигурирования пользовательских ПК давно является стандартом. Компьютер для бизнеса на базе процессорной технологии Intel vPro - это оптимизированный для корпоративных пользователей ПК, который позволяет наиболее эффективно управляться и быть надежно защищенным внутри парка ПК предприятия. Эти настольные компьютеры имеют аппаратную поддержку средств защиты и дистанционного управления, которые обеспечивают защиту данных и предотвращают сбои в работе даже если такой бизнес-компьютер выключен или на нем не работает операционная система, что обеспечивает сокращение затрат на IT-администрирование и снижает количество вызовов администриторов на рабочие места. В отличие от парка ПК небольшой организации, где управлять компьютерами относительно легко, в организации с десятками и сотнями компьютеров, поддерживать работу IT-инфраструктуры на порядки сложнее. Обслуживание парка компьютеров для бизнеса в большой организации требует привлечения большого количества средств, времени и увеличения IT-персонала. Даже такие задачи, как обновление ПО или инвентаризация может стать тяжелой задачей для среднего и большого предприятия. Для удобства обслуживания таких ПК используют различные системы управления парком бизнес-компьютеров. Но большинство из них требуют наличие работающей операционной системы, для них невозможна конфигурация настроек BIOS. Решить такую сложную задачу, как управление парком компьютеров предприятия поможет технология Intel vPro. Технология разрабатывалась для совместной работы с программным обеспечением управления IT-инфраструктуры предприятия от различных производителей (таких как LANdesk, Microsoft и др.). При этом такие компьютеры, построенные на базе новейших процессоров Intel Core i5 и i7, производительны и энергоэффективны. Компьютеры для бизнеса с технологией Intel vPro на базе процессоров Intel vPro имеют уникальные аппаратные технологии, открывающие новые возможности :

Технологические причины отказов персональных компьютеров.

Статья добавлена: 01.06.2021 Категория: Ремонт ПК

Технологические причины отказов персональных компьютеров. Современные технологии изготовления различного вида печатных плат и безсвинцовые технологии пайки - экологичны и эффективны, но они (в определенных условиях) порождают ряд явлений, приводящих к отказам. Достаточно часто, в разговорах со специалистами по ремонту персональных компьютеров, можно услышать: «пропаял контакты микросхем, разъемов неисправной платы и она заработала, неисправность исчезла». Обычно такое «волшебство» пропайки объясняют плохим качеством паяного соединения, но действительно ли это так? Есть и более реальное объяснение. «Усы» олова — это микроскопические проростки металла из мест пайки на печатной плате, являются причиной возникновения отказов электронных схем из-за замыканий между контактами и проводниками. Общеизвестен факт, что отрицательное воздействие внешней среды непосредственно сказывается на показателях надежности печатных узлов и сборок, выполненных по современным технологиям. При работе с безсвинцовыми припоями возникает ряд проблем, которые связаны с их физическими свойствами. Поэтому паяльные станции должны быть специально адаптированы для работы с безсвинцовыми припоями. Основные проблемы, которые могут возникнуть при пайке безсвинцовыми припоями: - более высокая температура плавления пайки может повредить электронные компоненты, содержащие пластмассу, могут получить термический «шок» и сами компоненты; - может возникнуть деформация печатных плат; - будет наблюдаться слабая увлажненность и растекание в связи с возрастающим эффектом окисления поверхности; - появится необходимость использования более активных (и коррозийных) флюсов; - возможно появление перемычек и замыканий; - вследствие более высокой температуры пайки будет наблюдаться сильное разбрызгивание флюса; - увеличится время создания качественной пайки (контакта); - вид паяного контакта будет более тусклым; - снизится ресурс нормальной работы паяльных головок; - потребуется изменить стиль работы монтажников. Итак, возможно появление перемычек и замыканий. Перемычки и замыкания возникают в виде «усов» олова (это микроскопические проростки металла из мест пайки на печатной плате). Эти таинственные проростки и бывают "виноваты" в серьезнейших отказах электроники. Олово без укрощающего его свинца ведет себя непредсказуемо. Оловянное покрытие без добавок так же, как кадмий и цинк, спонтанно образует кристаллы металла диаметром около 1-5 мкм и менее одной десятой толщины человеческого волоса, которые проталкиваются от основания вверх. Если они растут достаточно близко для того, чтобы прикоснуться к другому токопроводящему объекту, то вызовут короткое замыкание, которое может повредить аппаратуру.

Источники уточняющей диагностической информации из адаптеров и внешних устройств ПК.

Статья добавлена: 28.05.2021 Категория: Ремонт ПК

Источники уточняющей диагностической информации из адаптеров и внешних устройств ПК. Весьма достоверным источником уточняющей диагностической информации являются байты состояния, байты уточненного состояния, коды ошибок - информация из регистров ошибок и регистров состояний. Эта диагностическая информация формируется схемами контроля адаптеров внешних устройств и программами BIOS, которые пишутся высококвалифицированными специалистами. Эта диагностическая информация может быть получена и в результате выполнения специально написанных простых программ тестирования. Коды ошибок, байты состояний, информация в регистрах ошибок и регистрах состояний - формируются аппаратурой контроллеров и являются информацией о конкретных состояниях и ошибках в аппаратуре контроллеров и внешних устройств. Это достоверная опорная информация для поиска ошибок в контроллерах, расположенных на системных платах и во внешних устройствах. Кроме того, дополнительная уточняющая информация может быть получена и в результате использования специально написанных программ активизации сигналов, с проведением исследований электрической схемы с помощью осциллографа. Заключительный этап поиска неисправности в устройствах компьютера, как правило, требует исследования электронных схем с помощью осциллографа. Это исследование можно производить в устойчивом состоянии электронных схем устройств и программы после отказа. Но наибольший эффект при исследовании осциллографом можно получить, если с помощью программы активизировать исследуемый процесс. Для получения устойчивого изображения динамических сигналов на экране осциллографа необходимо, чтобы исследуемые в данном процессе сигналы повторялись периодически с одной и той же частотой. То есть необходимо циклически повторять исследуемый процесс, а это в большинстве случаев достаточно просто обеспечивается с помощью «зацикливания» программы, запускающей исследуемый процесс.

Магниторезистивные головки (ликбез).

Статья добавлена: 27.05.2021 Категория: Ремонт ПК

Магниторезистивные головки (ликбез). В современных устройствах внешней памяти на жестких магнитных дисках большой емкости запись осуществляется сверхминиатюрными магнитными головками (с зазором), выполненными по микронной полупроводниковой технологии. Такие головки позволяют намагничивать предельно малые домены магнитной поверхности, но запись выполняется за счет энергии тока записи достаточной для этого мощности, а вот при считывании, очень слабые поля доменов, при прохождении под зазором головки дают очень слабый электрический сигнал в обмотке считывания. Поэтому в магнитной записи при повышении плотности записи возникает серьезная проблема - при уменьшении размеров магнитных доменов носителя уменьшается уровень считанного сигнала головки и существует вероятность принять шум за «полезный» сигнал. Для решения этой проблемы необходимо иметь более эффективную головку чтения, которая более достоверно сможет определить наличие сигнала от «слабых» полей доменов. Известно, что от воздействия на некоторые материалы внешнего магнитного поля его сопротивление изменяется. Этот эффект был использован для создания считывающих головок нового поколения. Магниторезистивные (Magneto-Resistive - MR) головки являются чувствительными детекторами и регистрируют малейшие изменения в зонах намагниченности преобразуя их в электрические сигналы, которые могут быть интерпретированы как данные. При прохождении обычной головки над зоной смены знака, на выходах обмотки считывания формируется импульс напряжения, а при считывании данных с помощью магниторезистивной головки - ее сопротивление оказывается различным при прохождении над участками с разным значением остаточной (постоянной) намагниченности. Это явление и послужило основой для создания фирмой IBM нового типа считывающих головок. Через головку протекает небольшой постоянный измерительный ток, и при изменении сопротивления изменяется и падение напряжения на ней. Поскольку на основе магниторезистивного эффекта можно построить только считывающее устройство, магниторезистивная головка на самом деле - это две головки, объединенные в одну конструкцию. При этом, записывающая часть, представляет собой обычную индуктивную головку, а считывающая - магниторезистивную.

Интерфейс IrDA(ликбез).

Статья добавлена: 14.05.2021 Категория: Ремонт ПК

Интерфейс IrDA(ликбез). Интерфейс IrDA является беспроводным интерфейсом, в котором используются электромагнитные волны инфракрасного диапазона. Интерфейс позволяет освободить устройства от связывающих их интерфейсных кабелей, что особенно привлекательно для малогабаритной периферии, вес которой и размер соизмеримы с кабелями. В беспроводном интерфейсе IrDA существует способ подключения к локальным сетям на "инфракрасной" технике. Инфракрасная связь безопасна для здоровья, не создает помех в радиочастотном диапазоне и обеспечивает конфиденциальность передачи. ИК-лучи не проходят через стены, поэтому зона приема ограничивается небольшим, легко контролируемым пространством. Применение излучателей и приемников инфракрасного (ИК) диапазона позволяет осуществлять беспроводную связь между парой устройств, удаленных на расстояние до нескольких метров. ИК оптоэлектронные системы создаются из отдельных элементов. Основными оптоэлектронными элементами являются: - источники некогерентного оптического излучения (светоизлучающий диод); - активные и пассивные оптические среды; - приемники оптического излучения (фотодиод); - оптические элементы (линза). На структурной схеме оптоэлектронного прибора (ОЭП), приведенной на рис. 1, наряду с фотоприемниками и излучателями важным компонентом ОЭП являются входные и выходные согласующие электрические схемы, предназначенные для формирования и обработки оптического сигнала. Особенностью этих достаточно сложных, в основном интегральных, схем является компенсация потерь энергии при преобразованиях "электричество - свет" и "свет - электричество", а также обеспечение высокой стабильности и устойчивости работы ОЭП при воздействии внешних факторов. Оптоэлектроника обеспечивает высокую пропускную способность оптического канала, что определяется частотой колебаний на три-пять порядков выше, чем в освоенном радиотехническом диапазоне, а это значит, что во столько же раз возрастает и пропускная способность оптического канала передачи информации. Оптоэлектроника обеспечивает идеальную электрическую развязку входа и выхода, так как в качестве носителя информации используются электрически нейтральные фотоны, что обусловливает бесконтактность оптической связи. Отсюда следуют:

Звук в персональных компьютерах.

Статья добавлена: 28.04.2021 Категория: Ремонт ПК

Звук в персональных компьютерах. Диапазон звуковых частот, который способен слышать человек в очень большой степени зависит от индивидуальных особенностей конкретного человека, его возраста, накопленного опыта распознавания звуков, постоянного общения со звуком. В среднем человек воспринимает звук в диапазоне 20 – 20000 Гц. Колебания очень низкой частоты (инфразвук) воздействуют на человека, хотя он их не слышит, а многие животные слышат инфразвук (особенно собаки). Органы слуха у человека стереофонические, т. е. правое и левое ухо воспринимают звук независимо, поэтому человек способен выделять нужный звуковой сигнал и определять направление на источник сигнала. Человек воспринимает без болевых ощущений звук громкостью до 120 дБ, а при 150 дБ происходит повреждение органов слуха. На частоте звука 10 Гц порог слышимости равен 40дБ, а на частоте 10 кГц – 20 дБ. Наукой установлено, что человек определяет направление на источник звука примерно по одиннадцати параметрам, а современные звуковые технологии объемного звука имитируют только три из них. В реальной звуковой обстановке присутствуют эффекты искажающие звук: эхо, реверберация, поглощение и др. Современные технологии трехмерного звука лишь в небольшой степени способны моделировать эти процессы. Вся музыкальная культура построена на использовании гармонических колебаний (в основном реальный звук состоит из гармоник). В музыке интервал изменения основного тона нотного ряда в два раза обозначили термином «октава» (например, нота «до» второй октавы звучит на удвоенной частоте ноты «до» первой октавы). Средний человек воспринимает диапазон в 10 октав. За счет гармонических колебаний формируется полный частотный диапазон практически всех музыкальных инструментов. При обработке звука (даже цифровыми методами) неизбежно вносятся гармонические искажения в исходный сигнал. На компьютере обработка звука ведется цифровыми методами, так как обеспечить практически стопроцентную повторяемость звука от любой копии записи, можно только на цифровых устройствах, но, в конечном счете, самая сложная цифровая обработка звука заканчивается формированием аналогового сигнала, который превращают в звук. Исходный звук оцифровывают методом импульсно-кодовой модуляции (PCM - Pulse Code Modulation), при котором, например, с частотой дискретизации (принятой для CD-ROM) 44100 Гц в цифровом виде (16 двоичных разрядов обеспечивают охват диапазона 0 - 96 дБ) регистрируется текущая амплитуда звуковой волны. Уровень шумов дискретизации SNR (Signal/Noise Ratio) обычно равен 65-77 дБ и очень сильно зависит от формы и спектра оцифровываемого сигнала. Алгоритм обработки звуковых сигналов в мозге человека очень сложен, существующий метод сжатия, используемый в формате записи звука MPEG Audio Layer 3, упрощенно иммитирует итоговый результат работы мозга при обработке звука. Оцифровывает звуковой и превращает цифровой сигнал обратно в аналоговый - кодек, включающий аналого-цифровой и цифро-аналоговый преобразователи. Кодек выполняет одну из основных функций звуковой карты.

Разрушительные механизмы и причины отказов в электронных узлах на печатных платах.

Статья добавлена: 27.04.2021 Категория: Ремонт ПК

Разрушительные механизмы и причины отказов в электронных узлах на печатных платах. В электронной аппаратуре повсеместно начинают использовать решения, повышающие плотность ее компоновки: микрочипы, технология chip-onchip и др. Эти решения позволяют получить оптимальное сочетание функциональности, производительности и надежности. Не снижается также тенденция к уменьшению геометрических размеров электронных систем. Всё это ведет к увеличению количества компонентов на единице площади печатной платы, а значит — к росту количества межсоединений, требований к их надежности и электрической изоляции между ними. Практика показывает, что именно эти элементы конструкции электронной аппаратуры становятся сегодня одной из основных причин ее отказов в процессе эксплуатации. Давно общеизвестен факт, что отрицательное воздействие внешней среды непосредственно сказывается на показателях надежности печатных узлов и сборок выполненных по современным технологиям. При экстремальных условиях эксплуатации с целью увеличения срока службы и безотказности оборудования на печатные узлы принято наносить защитные покрытия. В зависимости от условий эксплуатации это могут быть акриловые или полиуретановые лаки, силиконовые материалы, эпоксидные смолы. Однако далеко не всегда перед нанесением влагозащитного покрытия должное внимание уделяется обеспечению чистоты поверхности печатного узла. Влагозащита и отмывка печатных узлов: где здесь связь и в чем проблема? Почему так важно обеспечить отсутствие загрязнений на поверхности печатного узла перед нанесением влагозащитного покрытия и как проявляется плохое качество отмывки в процессе эксплуатации? При нанесении влагозащитного покрытия необходимо обеспечить хорошую адгезию покрытия к печатному узлу, так как это позволит гарантировать высокую надежность и долговечность влагозащитного покрытия. Канифольные остатки флюса и активаторы в ряде случаев оказываются несовместимыми с применяемыми влагозащитными материалами и могут привести к значительному уменьшению адгезии. В результате происходит отшелушивание или отслаивание покрытия, ухудшение влагозащитных характеристик. Поэтому для обеспечения хорошей адгезии влагозащитного покрытия высокая чистота печатного узла является необходимым условием. Принимая решение о необходимости отмывки перед нанесением влагозащиты, также важно понимать, что современные покрытия являются препятствием для сконденсировавшейся влаги и молекул загрязнений, но, в то же время, они «запирают» загрязнения, имеющиеся на поверхности печатного узла. Это означает, что не отмытые остатки флюса, а также другие загрязнения после нанесения влагозащитного покрытия остаются на поверхности печатного узла и сохраняют свои свойства на протяжении всего периода хранения и использования изделия. При нормальных условиях эксплуатации данное явление не представляет серьезной опасности. Но при эксплуатации в условиях повышенной влажности, воздействия солевого тумана, перепадов температур, запертые внутри загрязнения становятся существенной угрозой надежности изделия. Разрушительные механизмы на поверхности не отмытого печатного узла под влагозащитным покрытием могут быть спровоцированы различными факторами воздействия окружающей среды. Но результатом таких процессов, как правило, являются следующие дефекты: - отслаивание влагозащитного покрытия (рис. 1); - токи утечки между проводниками; - уменьшение поверхностного сопротивления изоляции; - коррозионное разрушение печатного узла; - рост дендритов между проводниками, приводящий к короткому замыканию (рис. 2).

Химические реагенты, используемые для очистки устройств от пыли и загрязнения.

Статья добавлена: 26.04.2021 Категория: Ремонт ПК

Химические реагенты, используемые для очистки устройств от пыли и загрязнения. Для очистки устройств от пыли и загрязнения в процессе эксплуатации, для обеспечении работоспособности компонентов персональных компьютеров и их периферийных устройств, а также при ремонте широко используют самые различные химикаты. Одним из самых современных и удобных методов доставки химического вещества к конкретному месту его "воздействия" в устройстве, является нанесение его путем локального распыления с последующим испарением переносящего химического вещества (или, иначе говоря, использование их в виде аэрозолей). На российский рынок поставляется обширная гамма химических реагентов, используемых при работе с компонентами электронных схем, персональных компьютеров и их периферийных устройств в виде аэрозолей. Всех их которую можно разделить на несколько групп по их функциональному назначению: - чистящие средства, - препараты по обработке контактов, - смазочные и защитные препараты, - средства для создания токопроводящих и защитных покрытий, - препараты специального назначения. Препараты для обработки контактов позволяют решить одну из наиболее болезненных проблем при создании электронных устройств - защиту от коррозии и загрязнения контактов переключателей, разъемов, панелей микросхем, держателей предохранителей и т. д. Что бы получить высокое качество очистки контактов нужно применять последовательное применение трех препаратов - KONTAKT 60, KONTAKT WL, KONTAKT 61. Первый из них растворяет и разлагает окислы на поверхности контакта, второй вымывает остатки окислов и грязи, а третий формирует на очищенной поверхности защитную пленку, которая предохраняет ее от коррозии и предопределяет высокое качество контакта в течение длительного периода. KONTAKT 61 можно наносить и на не окисленные контакты новых изделий с целью продления их срока службы. Контакты с покрытием из золота, серебра, олова, родия и палладия полезно обрабатывать препаратом KONTAKT GOLD 2000, который создает защитную пленку и заметно уменьшает их износ.

Работа с термопастой.

Статья добавлена: 23.04.2021 Категория: Ремонт ПК

Работа с термопастой. Многие виды работ, которые связаны с устранением проблем в терморегуляции оборудования настольных компьютеров и ноутбуков, часто включают операции по установке или замене кулера на процессоре. У начинающих специалистов-ремонтников обычно возникает много вопросов относительно выбора материала для крепления кулера (термопасты или термоклея), а также правильности нанесения этого материала. Такие опасения не напрасны, ведь при неправильном нанесении термопасты на процессор или кулер может снизиться производительность компьютера, а в худшем случае даже может выйти из строя процессор. Рассмотрим, какие характеристики термопасты оказывают влияние на снижение нагрева процессора, а также как правильно наносить термопасту, чтобы она длительное время выполняла свои функции. Как правильно нанести или заменить термопасту на процессоре? Необходимо правильно работать с термопастой, ведь корректное нанесение слоя термопасты - это один из важных критериев получения качественного охлаждения. Даже при наличии очень эффективного кулера неправильно выбранная и/или плохо нанесенная ТП, сведет почти все старания кулера на нет, поскольку теплопередача будет страдать. Наносить термопасту нужно при замене процессора или кулера, высыхании старой термопасты, покупке нового процессора без предварительно нанесенной термопасты, или раз в пару лет для профилактики. Если вы не уверены, что сможете нанести термопасту самостоятельно, не причинив вреда вашему компьютеру, лучше обратитесь к специалисту. Слой термопасты должен быть достаточно тонким, чтобы расстояние между контактной площадкой процессора и кулером было минимальным. Слишком толстый слой будет плохо проводить тепло, и процессор начнет перегреваться из-за недостаточного охлаждения.

Планы на следующие поколения процессоров Intel Core (12,13,14).

Статья добавлена: 21.04.2021 Категория: Ремонт ПК

Планы на следующие поколения процессоров Intel Core (12,13,14). Новая информация о nextgen-процессорах Intel для настольных ПК под кодовыми названиями Alder Lake (12-е поколение Core), Meteor Lake (13-е поколение Core) и Lunar Lake (14-е поколение Core) была раскрыта каналом Moore's Law is Dead. Как видим, Intel остается приверженой методике именования семейств процессоров со словом Lake. Компания будет следовать такой иерархии как минимум до середины 20-х годов, если не произойдет что-то неординарное. Семейство Intel Alder Lake официально подтверждено Intel и, согласно первым дорожным картам, должно было быть запущено к концу 2020 года. Но в ближайших планах чипмейкера стоит выпуск Rocket Lake весной 2021 года. По информации инсайдера 10-нм Alder Lake станут доступны не ранее начала 2022 года. Предполагается, что рост показателя IPC для семейства Alder Lake составит 35-50% по сравнению с архитектурой Skylake (семейство процессоров Core 6–10 поколений) и 10-20% по сравнению с Willow Cove (семейство мобильных Tiger Lake). Alder Lake по-прежнему будет опираться на монолитную конструкцию с частотами динамического разгона около 5 ГГц. За обработку графики отвечает оптимизированное ядро Xe с 32 исполнительными модулями Давно не секрет, что главной инновацией Alder Lake станет гибридная технология, объединяющая большие (архитектура Golden Cove) и малые (Gracemont) ядра в одном кристалле. Hybrid Technology успешно опробована на SoC Lakefield и готова к «большому плаванию». Ядра Golden Cove будут поддерживать многопоточность, поэтому старшие процессоры Core i9 получат интересную конфигурацию 8/16 + 8, позволяющую обрабатывать 24 потока одновременно. Кроме того, платформа LGA1700, вполне вероятно, получит поддержку памяти нового стандарта DDR5 и шины PCIe 5.0, в дополнение к следующей версии протокола Thunderbolt. Хотя наиболее правдоподобен вариант с одновременной поддержкой памяти DDR4 и DDR5. Ожидается, что линейка Meteor Lake впервые перейдет на 7-нм EUV-техпроцесс Intel и будет основана на перспективной архитектуре Redwood Cove.

Профилактическое обслуживание жестких дисков (ликбез).

Статья добавлена: 21.04.2021 Категория: Ремонт ПК

Профилактическое обслуживание жестких дисков (ликбез). На первом месте в списке параметров жесткого диска, несомненно, стоит надежность. Поломка жесткого диска часто означает для пользователя не просто приостановку работы, но и необходимость решения непростых проблем восстановления информации. Иногда стоимость таких работ превышает цену нового компьютера. Профилактическое обслуживание жестких дисков гарантирует сохранность данных и повышает эффективность работы жесткого диска, поэтому необходимо время от времени выполнять некоторые процедуры по его обслуживанию. Существует несколько простых программ, которые создают резервные копии тех критических зон жесткого диска (и при необходимости восстанавливают их), при повреждении которых доступ к к информации и программам на уровне файлов становится невозможным. Важным моментом в поддержании эффективной работы жестких дисков является процедура дефрагментации файлов. «Стирая» и записывая файлы на жесткий диск мы создаем на диске свободные зоны разбросанные по всему диску. Периодически выполняя дефрагментацию файлов, мы размещаем файлы в непрерывных областях на диске, сводя к минимуму перемещения головок при их считывании и записи, что уменьшает износ привода головок и самого диска, и существенно увеличивает скорость считывания файлов с диска. Кроме того, при серьезных повреждениях таблиц размещения файлов (File Allocation Table - FAT) и корневого каталога данные на диске легче восстановить, если файлы записаны в последовательно расположенных блоках. Если же файлы состоят из множества фрагментов, то часто при повреждениях FAT практически невозможно определить, к какому файлу относится тот или иной фрагмент. Считается оптимальным (в интересах сохранности информации) выполнять дефрагментацию жесткого диска раз в неделю или после каждой операции резервного копирования. В большинстве программ дефрагментации предусмотрены функции дефрагментации файлов, уплотнения файлов (упорядочение свободного пространства), сортировка файлов. Основной операцией является дефрагментация, но в большинстве программ предусмотрено и уплотнение файлов. На дефрагментацию затрачивается значительное время поэтому она не выполняется автоматически, а должна быть указана особо.

Стр. 11 из 61      1<< 8 9 10 11 12 13 14>> 61

Лицензия