Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по блокам питания

Стр. 11 из 28      1<< 8 9 10 11 12 13 14>> 28

Технические термины применяемые в документации по АКБ.

Статья добавлена: 02.03.2018 Категория: Статьи по блокам питания

Технические термины применяемые в документации по АКБ. Аккумулятор (элемент) (cell, secondary cell) - совокупность электродов и электролита, образующая основу устройства аккумуляторной батареи. Аккумуляторная батарея (secondary battery) - два или более аккумуляторов (элементов), соединенных между собой и используемых в качестве источника электрической энергии. Свинцово-кислотная аккумуляторная батарея (lead acid battery) - аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты. Заряд батареи (charge of a battery) - операция, в процессе которой батарея получает от внешней цепи электрическую энергию, которая преобразуется в химическую. Разряд батареи (discharge of a battery) - операция, в процессе которой батарея отдает ток во внешнюю цепь в результате превращения химической энергии в электрическую. Открытый аккумулятор (vented cell) - аккумулятор, имеющий крышку с отверстием, через которое могут удаляться газообразные продукты. Отверстие может быть снабжено системой вентиляции. Закрытый аккумулятор (valve-regulated sealed cell) - аккумулятор, который закрыт в обычных условиях, но имеет устройство, позволяющее выделяться газу, когда внутреннее давление превышает установленное значение. Обычно дополнительная заливка электролита в такой аккумулятор невозможна. Сухозаряженная батарея (dry charged battery) - аккумуляторная батарея, хранящаяся без электролита, пластины (электроды) которой находятся в сухом заряженном состоянии. Пластина Планте (Plante plate) - пластина очень большой эффективной поверхности, обычно изготавливаемая из свинца, активная масса которой формируется в тонких слоях свинца путем электрохимического окисления. Намазная (пастированная) пластина (pasted plate) - пластина, содержащая токопроводящую решетку, которая служит основой для активной массы. Трубчатая (панцирная) пластина (tubular plate) - положительная пластина, которая состоит из комплекта пористых трубок, заполненных активной массой. Вентиляционная пробка (vent plug (of a cell or battery)) - деталь, закрывающая заливочное отверстие, которое также используется для удаления газа. Предохранительный клапан (vent valve) - деталь вентиляционной пробки, которая позволяет выходить газу в случае избыточного внутреннего давления, но не допускает поступления воздуха в аккумулятор. Батарейный поддон (battery tray) - контейнер со сплошными стенками для размещения нескольких аккумуляторов или батарей. Емкость батареи (battery capacity) - количество электричества или электрический заряд, которое(ый) полностью заряженная батарея может отдать в заданных условиях. Единицей СИ для электрического заряда является кулон (1 Кл = 1 А•с), но на практике емкость обычно выражается в ампер-часах (А•ч). Конечное напряжение разряда (final voltage, cut-off voltage, end voltage) - заданное напряжение, при котором разряд батареи считается законченным. Постоянный подзаряд (непрерывный заряд малым током) (trickle charge) - непрерывный заряд длительным режимом, который компенсирует саморазряд и поддерживает батарею в состоянии почти полной заряженности.

Низковольтные MOSFET-транзисторы в корпусах SO-8.

Статья добавлена: 28.02.2018 Категория: Статьи по блокам питания

Низковольтные MOSFET-транзисторы в корпусах SO-8. Линейка низковольтных силовых MOSFET-транзисторов компании International Rectifier выполнена по улучшенной технологии и с использованием современных технологий корпусирования. Их применение позволит выполнить самые жесткие требования к эффективности и себестоимости конечного решения. Низковольтные MOSFET-транзисторы - одни из самых востребованных в настоящее время. Они находят широкое применение в каскадах DC/DC-преобразователей, коммутации и распределении цепей питания, а также защиты батарейных источников питания в потребительском, компьютерном и коммуникационном оборудовании. В условиях жесткой конкурентной борьбы и существования различного рода требований к высокой энергоэффективности оборудования разработчики стремятся уменьшить габариты, энергопотребление, и при этом снизить себестоимость конечной продукции. Силовые коммутаторы, которые стали прочной нишей для использования MOSFET-транзисторов, наиболее чувствительны к этим характеристикам. Они порой предъявляют полярные требования к силовому MOSFET-транзистору, требуя в одном случае поиска транзистора с минимальным сопротивлением открытого канала RDS(ON), как в случае статического ключа, а в другом - с минимальным зарядом затвора (QG), как в случае высокочастотного ШИМ-коммутатора. Прежде эти условия приводили к необходимости выбора различных марок транзисторов для работы в тех или иных каскадах. Необходимо было также выбрать оптимальное соотношение занимаемой площади и рассеиваемой мощности. Однако совершенствование технологий производства MOSFET-транзисторов позволило компенсировать влияние данных противоречий. Применение сдвоенных транзисторов выгодно в тех случаях, когда в силовых каскадах используется несколько транзисторов и одновременно требуется повысить плотность монтажа и/или снизить количество комплектующих элементов. Сдвоенные n-канальные MOSFET-транзисторы, например, IRF8313PBF содержит два полностью идентичных и независимых n-канальных MOSFET-транзистора (рис. 1б), а IRF8513PBF - два отличающихся по характеристикам n-канальных MOSFET-транзистора, включенных по схеме полумостового коммутатора (рис. 1в). Каждый из этих сдвоенных транзисторов оптимизирован для использования в высокоэффективных понижающих DC/DC-преобразователях с синхронным выпрямлением.

Блоки питания стандарта EPS12V.

Статья добавлена: 20.02.2018 Категория: Статьи по блокам питания

Блоки питания стандарта EPS12V. Требования, предъявляемые к высококачественным устройствам, очень жесткие и все блоки питания им должны соответствовать. Для оценки качества блока питания используются различные критерии. Многие потребители при покупке компьютера пренебрегают значением источника питания, и поэтому некоторые сборщики персональных компьютеров сокращают расходы на него. Ведь не секрет, что гораздо чаще цена компьютера увеличивается за счет дополнительной памяти или жесткого диска большей емкости, а не за счет более совершенного источника питания. Недостаточная мощность блока питания ограничивает возможности расширения компьютера, но достаточно часто компьютеры выпускаются с довольно мощными блоками питания, учитывая, что в будущем в систему будут установлены новые (дополнительные) узлы. Паспортное значение мощности, указанное на блоке питания как всем известно это еще не все данные о блоке питания, которые мы должны учитывать. Дешевые блоки питания наверняка могут развивать мощность, указанную в паспорте, но а как у них обстоят дела с другими характеристиками? Одни блоки питания с трудом отрабатывают свои параметры, а другие работают надежно и с большим запасом. Многим дешевым блокам питания свойственны нестабильные выходные напряжения, в них также присутствуют шумы и помехи, а это, как известно приводит к многочисленным неприятным проблемам. Как правило, такие источники питания сильно нагреваются сами и греют все остальные компоненты системного блока компьютера. Замена установленного в компьютере блока питания на более мощный обычно не является проблемой, т. к. конструкции блоков питания стандартизованы, и найти замену для большинства систем достаточно просто. Ремонт высококачественных и дорогих блоков питания экономически выгоден и практически возможен при наличии подготовленного ремонтного персонала (например на курсах). Изменение потребляемой мощности, состава оборудования, элементной базы, номиналов напряжений питания и конструкции ПК соответственно потребовало изменения стандартов форм-факторов блоков питания. Стандарт EPS12V - это стандарт для серверов начального уровня, однако упомянуть о нем все же необходимо: дело в том, что в продаже достаточно часто встречаются соответствующие ему блоки питания мощностью 400-500 Вт, которые представляют определенный интерес и для владельцев мощных систем стандарта АТХ. Физически блоки стандарта EPS12V по габаритам и расположению крепежных отверстий совместимы с блоками АТХ, так что ничто не препятствует их установке в обычный АТХ-корпус.

Многофазные импульсные регуляторы напряжения питания.

Статья добавлена: 01.02.2018 Категория: Статьи по блокам питания

Многофазные импульсные регуляторы напряжения питания. Во всех современных материнских платах используются импульсные преобразователи постоянного напряжения. Понижающий импульсный преобразователь постоянного напряжения для питания процессора часто называют модулем VRM (Voltage Regulation Module - модуль регулирования напряжения) или VRD (Voltage Regulator Down - модуль понижения напряжения). Разница терминов VRM и VRD заключается в том, что модуль VRD расположен непосредственно на материнской плате, а VRM представляет собой внешний модуль, устанавливаемый в специальный слот на материнской плате. В настоящее время внешние VRM-модули практически не встречаются и все производители применяют VRD-модули, но само название VRM так прижилось, что стало общеупотребительным и теперь его используют даже для обозначения VRD-модулей (импульсные регуляторы напряжения питания, применяемые для чипсета, памяти и других микросхем материнских плат, обычно не имеют своего специфического названия, однако по принципу действия они ничем не отличаются от VRD. Разница заключается лишь в количестве фаз питания и выходном напряжении). Преобразователь напряжения характеризуется входным и выходным напряжением питания. Выходное напряжение питания определяется конкретной микросхемой, для которой используется регулятор напряжения, но входное напряжение может быть или 5, или 12 В (сейчас производители материнских плат стали все чаще использовать входное напряжение 12 В). Принцип действия однофазного импульсного регулятора напряжения питания Без рассмотрения принципов действия простейшего однофазного импульсного регулятора напряжения нельзя переходить к рассмотрению многофазных импульсных регуляторов напряжения питания. Рассмотрим основные компоненты импульсного регулятора напряжения питания. Импульсный понижающий преобразователь напряжения питания содержит: ШИМ-контроллер (PWM-контроллер); электронный ключ, который управляется ШИМ-контроллером и периодически подключает и отключает нагрузку к линии входного напряжения; индуктивно-емкостной LC-фильтр для сглаживания пульсаций выходного напряжения (ШИМ - широтно-импульсная модуляция, PWM - это Pulse Wide Modulation). PWM-контроллер создает последовательность управляющих импульсов напряжения, представляющих собой последовательность прямоугольных импульсов напряжения (см. рис. 1), которые характеризуются амплитудой, частотой и скважностью (скважностью называют отношение промежутка времени, в течение которого сигнал имеет высокий уровень, к периоду сигнала).

Проявления неисправности блока питания ПК.

Статья добавлена: 31.01.2018 Категория: Статьи по блокам питания

Проявления неисправности блока питания ПК. О неисправности блока питания можно судить по многим косвенным признакам. Например, сообщения об ошибках четности часто свидетельствуют о неполадках в блоке питания. Это может показаться странным, поскольку подобные сообщения должны появляться при неисправностях в ОЗУ. Однако связь в данном случае очевидна: микросхемы памяти получают напряжение от блока питания, и, если это напряжение не соответствует определенным требованиям, происходят сбои в модулях памяти. Конечно, нужен определенный опыт, чтобы правильно определить, когда причина этих сбоев состоит в неправильном функционировании самих микросхем памяти, а когда скрыта в блоке питания. При неисправности блока питания могут возникнуть следующие проблемы: - зависания и ошибки при включении компьютера; - cпонтанная перезагрузка или периодические зависания во время обычной работы; - хаотичные ошибки четности или другие ошибки памяти; - одновременная остановка жесткого диска и вентилятора (отсутствует напряжение +12 В); - перегрев компьютера из-за выхода из строя вентилятора; - перезапуск компьютера из-за малейшего снижения напряжения в сети; - удары электрическим током во время прикосновения к корпусу компьютера или к разъемам; - небольшие статические разряды, нарушающие работу системы. К сожалению, практически любые сбои в работе компьютера могут быть вызваны неисправностью именно блока питания, но конечно, есть и более конкретные признаки, указывающие на неисправность блока питания: - компьютер вообще не работает (не работает вентилятор, на дисплее нет курсора); - появился дым; - на распределительном щитке сгорел сетевой предохранитель. Недостаточная мощность блока питания ограничивает возможности расширения компьютера, но достаточно часто компьютеры выпускаются с довольно мощными блоками питания, учитывая, что в будущем в систему будут установлены новые (дополнительные) узлы.

ACPI и глобальные энергетические состояния оборудования персонального компьютера.

Статья добавлена: 26.01.2018 Категория: Статьи по блокам питания

ACPI и глобальные энергетические состояния оборудования персонального компьютера. В ACPI предусматривается несколько классов энергетических состояний системы, а именно: глобальные состояния, состояния «сна» энергетические состояния процессора, энергетические состояния устройств, состояния производительности. Так как в каждой из групп энергетических состояний существует несколько уровней сохранения энергии, общее количество режимов работы системы достаточно велико. Глобальные энергетические состояния обозначаются как Gx и применяются сразу ко всей системе. Глобальные энергетические состояния являются "видимыми" для пользователя и описываются с помощью шести принципиально важных критериев: 1. Возможностью запуска программных приложений. 2. Временем реакции приложения на возникновение внешнего события. 3. Уровнем потребляемой мощности. 4. Необходимостью перезагрузки операционной системы для возврата в рабочий режим. 5. Безопасностью для разборки компьютера. 6. Возможностью входа и выхода из режима энергосбережения "электронным" способом. В стандарте ACPI версии 3.0 описывались четыре глобальных состояния системы: 1) G3 - Mechanical Off (механическое отключение). 2) G2 - Soft Off (программное отключение - "глубокий сон "). 3) G1 - Sleeping ("легкий сон"). 4) G0 - Working (рабочий режим).

Контроль возможных замыкании или наличия повышенной нагрузки в цепи питания для устройств, размещенных на системной плате ПК.

Статья добавлена: 23.01.2018 Категория: Статьи по блокам питания

Контроль возможных замыкании или наличия повышенной нагрузки в цепи питания для устройств, размещенных на системной плате ПК. До подключения электропитания к исследуемой системной плате необходимо произвести измерение сопротивления нагрузки между контактами номиналов вторичного напряжения (например, +5 вольт) и «землей» и др. на разъеме электропитания, что позволяет определить ненормальную (повышенную) нагрузку на источник электропитания, что может быть вызвано пробоем на землю или источника питания, или одного из выводов микросхемы, запитанной от этого источника. При прямом и обратном измерении сопротивления между «плюсом» исправного источника вторичного напряжения и землей, должна быть видна разница измеренного сопротивления в соотношении примерно 3:2, а слишком малым сопротивлением нагрузки считается примерно 30-32 Ома.). Условное название «прямое» подключение означает, что минус клеммы прибора был подсоединен к общему контакту системной платы, а плюс клеммы прибора применялся в конкретной точке замера; условное название «обратное» подключение означает, что плюс клеммы прибора был подсоединен к общему контакту системной платы, а минус клеммы прибора применялся в конкретной точке замера. Как видно из полученных нагрузочных сопротивлений занесенных в таблицу 1, сопротивление нагрузки уменьшается для положительных напряжений, если используется «обратное» подключение измерительного прибора. О возможном замыкании или наличии повышенной нагрузки в цепи питания для устройств, размещенных на системной плате можно судить, используя информацию, полученную измерением сопротивления нагрузок (в прямом и обратном включении омметра) с разъема ATX и ATX -12 вольт (рис. 1, рис. 2).

Правила оптимального использования энергии аккумулятора мобильного ПК.

Статья добавлена: 17.01.2018 Категория: Статьи по блокам питания

Правила оптимального использования энергии аккумулятора мобильного ПК. Чтобы оптимально использовать энергию вашего аккумулятора, для увеличения времени автономной работы и ресурса батареи, соблюдайте следующие простые рекомендации:

Применение DrMOS-микросхем.

Статья добавлена: 16.01.2018 Категория: Статьи по блокам питания

Применение DrMOS-микросхем. Технология DrMOS была разработана компанией Intel и буквально означает Driver + MOSFETs, т. е. используется одна микросхема, объединяющая и силовые транзисторы, и драйвер. Естественно, что при этом также применяются отдельные дроссели и конденсаторы, а для управления всеми фазами служит многоканальный PWM-контроллер. DrMOS-микросхемы Renesas R2J20602 используются, например, на платах MSI для процессоров семейства Intel Core i7. DrMOS-микросхема Renesas R2J20602 (см. рис. 1) поддерживает частоту переключения MOSFET-транзисторов до 2 МГц и отличается очень высоким КПД. При входном напряжении 12 В, выходном 1,3 В и частоте переключения 1 МГц ее КПД составляет 89%. Ограничение по току - 40 А. При шестифазной схеме питания процессора обеспечивается как минимум двукратный запас по току для DrMOS-микросхемы. При реальном значении тока в 25 А энергопотребление (выделяющееся в виде тепла) самой микросхемы DrMOS составляет всего 4,4 Вт. Также становится очевидным, что при использовании DrMOS-микросхем Renesas R2J20602 нет необходимости применять более шести фаз в регуляторах напряжения питания процессора. Функциональная схема DrMOS-микросхемы R2J20602NP приведена на рис. 2. Типовая схема использования DrMOS-микросхем R2J20602NP (4 канала) показана на рис. 3.

Cигнал PSI (Power Status Indicator) процессора.

Статья добавлена: 21.12.2017 Категория: Статьи по блокам питания

Cигнал PSI (Power Status Indicator) процессора. Сигнал PSI позволяет повысить эффективность регулятора напряжения питания процессора и улучшить тем самым энергоэкономичность компьютеров. Регулировка подачи питания на процессор производится по сигналу PSI (Power Status Indicator) процессора, который генерируется, когда процессор находится в режиме Deeper Sleep. Сигнал о величине тока поступает на процессор, а тот, в свою очередь, определяет, в каком состоянии находится – в стандартном или с низкой нагрузкой. В случае низкой нагрузки сигнал PSI# поступает обратно на ШИМ-контроллер, который может отключить часть фаз за ненадобностью и тем самым снизить энергопотребление всей схемы питания. Пример использования PSI в 6-фазном PWM-контроллере Intersil ISL6336A. PWM-контроллер Intersil ISL6336A может динамически отслеживать текущую загрузку процессора (ток, потребляемый процессором) и в зависимости от этого активировать необходимое число фаз питания (PWM-каналов). Например, когда процессор загружен несильно, а значит, потребляемый им ток невелик, вполне можно обойтись и одной фазой питания, а потребность в шести фазах возникает только при сильной загрузке процессора, когда потребляемый им ток достигает максимального значения. Динамическое переключение числа фаз питания в регуляторе напряжения производится с целью оптимизации его КПД или энергоэффективности. Дело в том, что любой регулятор напряжения сам потребляет часть преобразуемой им электроэнергии, которая выделяется в виде тепла. Функциональная блок-схема 6-фазного PWM-контроллера Intersil ISL6336A приведена на рис. 1, а типовая схема использования 6-фазного PWM-контроллера Intersil ISL6336A показана на рис. 2.

Источник дежурного питания (пример).

Статья добавлена: 20.12.2017 Категория: Статьи по блокам питания

Источник дежурного питания (пример). Источник дежурного питания предназначен для создания начального напряжения питания при запуске ШИМ-контроллера и формирования напряжения питания +5VSB для системной платы, когда компьютер находится в «спящем» режиме и питания первичной обмотки согласующего трансформатора. Этот источник состоит из однотактного преобразователя, подключенного к выпрямителю первичной сети, и стабилизатора вторичного напряжения.

Характеристики аккумуляторных батарей.

Статья добавлена: 19.12.2017 Категория: Статьи по блокам питания

Характеристики аккумуляторных батарей. У любой аккумуляторной батареи есть несколько характеризующих ее важных характеристик. Внутреннее сопротивление. Внутреннее сопротивление измеряется в миллиомах (мОм). Чем меньше внутреннее сопротивление батареи, тем лучше ее нагрузочные характеристики. При работе с офисными приложениями ноутбук потребляет относительно небольшие токи, но во время интенсивной игры, использующей сложные преобразования 3D-графики потребляемый ток возрастает многократно. В «критических» случаях батареи с различной химией ведут себя неодинаково. Наименьшим внутренним сопротивлением обладают батареи на основе лития, а никель-металлогидридные имеют значительно большее сопротивление. Поэтому (при одинаковой емкости батарей), в случае высоких потребляемых токов (например, при интенсивной вычислительной нагрузке на процессор и видеоподсистему ноутбука) у никель-металлогидридных батарей напряжение упадет до критического уровня быстрее, чем у литиевых батарей. А многие обычные пользователи уверены, что раз емкость батарей с разной химией одинакова, то и время работы ноутбука от каждой из них будет сопоставимо, но это далеко не так. Внутреннее сопротивление аккумулятора, измеряемое в миллиомах (мОм, mOm), - это хранитель аккумулятора и в значительной степени определяет длительность его работы. При более низком внутреннем сопротивлении, аккумулятор может отдать в нагрузку больший пиковый ток, а значит и большую пиковую мощность. Высокое значение сопротивления делает аккумулятор «мягким» и приводит к резкому уменьшению напряжения при резком увеличении тока нагрузки. С другой стороны, хороший аккумулятор с низким внутренним сопротивлением отдает почти всю свою энергию в нагрузку. Внутреннее сопротивление аккумулятора зависит от емкости элемента и числа элементов в аккумуляторе, соединенных последовательно. Плотность энергии (Energy Density) заряженной батареи. Другая не менее важная характеристика аккумуляторных батарей это плотность энергии заряженной батареи, которая измеряется в Вт*час/килограмм массы батареи. Наибольшую плотность энергии имеют литий-полимерные батареи (150–200 Вт*час/кг), им немного уступают литий-ионные батареи (100–150 Вт*час/кг), а никель-металл-гидридные батареи едва обеспечивают плотность энергии 60–80 Вт*час/кг. Поэтому, наименьшими размерами и весом при одинаковой емкости обладают литий-полимерные и литий-ионные батареи, а никель-металлогидридные имеют несколько большие размеры.

Стр. 11 из 28      1<< 8 9 10 11 12 13 14>> 28

Лицензия