Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Ремонт ПК

Стр. 31 из 61      1<< 28 29 30 31 32 33 34>> 61

Как сэкономить энергию аккумулятора ноутбука.

Статья добавлена: 04.12.2017 Категория: Ремонт ПК

Как сэкономить энергию аккумулятора ноутбука. При работе от аккумулятора ноутбук должен автоматически приглушать яркость экрана, понижать тактовую частот графического и центрального процессоров, а также отключать экран и останавливать жёсткий диск после определённого периода бездействия. Если у вас установлена Windows или Mac, не забывайте активировать опции управления энергосбережением в системе, чтобы автоматически отключать устройства и компоненты. Под Windows следует перейти в "Панель управления" и выбрать значок "Электропитание", где выставить соответствующую схему, но если производитель ноутбука предоставил собственную утилиту, то лучше воспользоваться именно ей, поскольку она позволяет управлять большим числом опций. С помощью подобных утилит можно создать несколько профилей под Windows, где можно, например, максимально приглушить экран, выставить процессор на максимальную частоту для максимальной производительности или на минимальную частоту для экономии энергии, выключать Wi-Fi и сетевые соединения, сокращать срок бездействия, после которого будет останавливаться жёсткий диск. Все эти меры позволяют экономить энергию, когда упомянутые функции не нужны. Ещё один вариант экономии заключается в настройке системы, чтобы обеспечить более длительное время автономной работы при воспроизведении DVD. Например, стоит максимально приглушить яркость экрана, поскольку он потребляет больше всего энергии по сравнению с другими компонентами ноутбука. Разницу вы заметите по предполагаемому оставшемуся времени автономной работы в панели задач Windows taskbar. При закрытии крышки ноутбука он должен уходить в спящий режим (hybernate), а не в ждущий режим (standby/suspend). Тогда содержимое оперативной памяти будет сбрасываться на жёсткий диск, а система полностью выключаться, поэтому она практически не будет потреблять энергии. Что ещё лучше, если заряд кончится, то вы сможете продолжить работу с того же места после подключения к розетке. Отключайте (Disable) ненужное оборудование, чтобы сэкономить энергию, или создавайте соответствующий профиль. Чем больше оборудования вы отключите, и чем меньше приложений будут нагружать вашу систему, тем меньше энергии вы будете тратить. Отключите любую ненужную периферию: карты PC Card, CD/DVD и флэш-карточки, если вы закончили с ними работу. Радиомодули Wi-Fi и Bluetooth тоже потребляют энергию, пусть даже вы не работаете в беспроводной сети, поэтому тоже отключайте их, если они не нужны. Если у вас есть утилита энергосбережения от производителя ноутбука, то с её помощью можно отключить все сетевые интерфейсы: беспроводную карту, порт Ethernet. Можно воспользоваться и "Диспетчером устройств/Device Manager", в котором отключить модем, последовательные порты и USB и даже оптический привод, но на включение/выключение уходит время. Чтобы упростить весь процесс, рекомендуется настроить профили оборудования (закладка "Оборудование" в "Свойствах системы").

Дефекты и проблемы электролитических конденсаторов.

Статья добавлена: 08.02.2019 Категория: Ремонт ПК

Дефекты и проблемы электролитических конденсаторов. Одной из причин отказа компьютера могут являться вышедшие из строя электролитические конденсаторы, которые часто используются как компоненты электрических схем. Электролитические конденсаторы отличаются от других конденсаторов тем, что в алюминиевом корпусе находится жидкость (электролит), проводящая ток при подаче напряжения. Почти все электрические схемы в блоке питания используют конденсаторы в фильтрах. Ток после выпрямителя не идеален, пульсации всё равно заметны. Но краткие падения напряжения, вызываемые пульсациями, можно компенсировать конденсатором, который работает как источник дополнительного напряжения, стабилизируя подаваемое напряжение. Электролиты, используемые в конденсаторах обладают низким внутренним сопротивлением и должны обладать очень хорошей проводимостью. Чтобы повысить проводимость электролита (который состоит по большей части из диспергаторов) необходимо использовать добавки. И одна из таких добавок - вода. Недостаточно очищенная вода взаимодействует с алюминиевым корпусом конденсатора, вызывая коррозию. При этом создаются газы, которые увеличивают внутреннее давление - и конденсатор начинает вздуваться. На верхней плоскости конденсатора есть специальные насечки, которые раскрываются при слишком высоком давлении, позволяя газу выйти наружу. Иногда насечки не помогают, и конденсатор взрывается. То же самое происходит и при подаче слишком высокого напряжения. Кроме того, электролит, который находился в конденсаторе, может вытечь на материнскую плату и вызвать короткое замыкание. Электролит может изменить своё физическое состояние и попросту испариться. Причём это может произойти не только в работающей системе, но и тогда, когда система выключена или материнская плата вообще хранится отдельно. От хорошего охлаждения компьютерного корпуса выигрывают не только такие комплектующие, как память или процессоры. Хорошее охлаждение также увеличивает и время жизни конденсаторов, поскольку вероятность испарения зависит от температуры окружающей среды. Падение температуры на 10°C удваивает время жизни конденсатора. Обычно дефектный конденсатор можно распознать по последствиям взрыва. Вздутие или даже нарушение целостности сигнализирует о том, что конденсатор вскоре выйдет из строя (если он ещё работает). Иногда резиновая прокладка, закрывающая конденсатор снизу, выталкивается газом наружу. Но конденсаторы, чей электролит улетучился и не оставил следов на алюминиевом корпусе, весьма трудно обнаружить. Если конденсатор высыхает, то уменьшается и его ёмкость, измерив емкость и сравнив ее с указанной на конденсаторе, можно справиться и с этой проблемой (для измерения ёмкости конденсатора обычно используют мультиметр). Использование твердотельных конденсаторов Solid CAP устранило проблему взрывающихся конденсаторов и обеспечило колоссальное увеличение срока службы.

Прошивка, индивидуальные настройки и адаптивы HDD.

Статья добавлена: 30.11.2017 Категория: Ремонт ПК

Прошивка, индивидуальные настройки и адаптивы HDD. Электронные микропроцессорные схемы контроллеров HDD без управляющих микропрограмм работать естественно не будут. «Старые» модели винчестеров хранили микропрограммы в ПЗУ, что вызывало естественные неудобства и накладывало определенные ограничения. Теперь же для хранения микропрограмм используется сам жесткий диск. Разработчик резервирует некоторый объем и размещает в нем весь необходимый «микрокод» управляющей, диагностической программ и данные. Информация организована в виде модулей и управляется специализированной операционной системой. Теперь в ПЗУ остается лишь базовый код, своеобразный «фундамент» винчестера (некоторые производители убирают из ПЗУ все, кроме первичного загрузчика). Само ПЗУ может быть расположено как внутри микроконтроллера, так и на отдельной микросхеме. Практически все винчестеры имеют FLASH-ROM, но не на всех моделях она распаяна. Если FLASH-ROM установлена, то микроконтроллер считывает прошивку из нее, если нет, то обращается к своему внутреннему ПЗУ. Часть модулей (и информации, находящейся в ПЗУ) одинакова для всей серии винчестеров. К ней в первую очередь относится совокупность управляющих микропрограмм. Эти модули полностью взаимозаменяемы, и один диск свободно может работать с модулем другого без каких-либо последствий. Часть модулей (реже – информации из ПЗУ) готовится отдельно для каждой партии (например, паспорт диска, описывающий его конфигурацию, указывает количество головок, физических секторов и цилиндров). В процессе инициализации микропроцессор опрашивает коммутатор и перечисляет головки. Если их количество не совпадает с указанным в паспорте, винчестер не сможет войти в состояние готовности. Кроме того, достаточно часто производители отключают некоторые головки из-за дефектов поверхности, неисправностей самих головок или по маркетинговым соображениям. Из-за этого образуются внешне очень похожие модели-близнецы, но непосредственная перестановка плат невозможна, и паспорт приходится корректировать, для чего опять-таки понадобится PC-3000. Но в принципе подобрать донора с идентичным паспортом вполне возможно и без коррекции. Все проблемы такого типа возникают от модулей (или информации, прошитой в ПЗУ), уникальных для каждого экземпляра винчестера и настраиваемых строго индивидуально.

Спецификация UEFI - Unified Extensible Firmware Interface.

Статья добавлена: 29.11.2017 Категория: Ремонт ПК

UEFI (Unified Extensible Firmware Interface) — замена устаревшему BIOS. Эта спецификация была придумана Intel для Itanium, тогда она еще называлась EFI (Extensible Firmware Interface), а потом была использована и на x86, x64 и ARM. Она разительно отличается от BIOS как самой процедурой загрузки, так и способами взаимодействия с ОС. Основные отличия UEFI от BIOS:

Особенности SSD-накопителей.

Статья добавлена: 23.11.2017 Категория: Ремонт ПК

Особенности SSD-накопителей. Для того чтобы прочитать блок данных с винчестера (HDD) сначала нужно вычислить, где он находится, потом переместить блок магнитных головок на нужную дорожку, подождать пока нужный сектор окажется под головкой и тогда произвести считывание. Хаотические запросы по чтению к разным областям жесткого диска еще больше сказываются на времени доступа. При таких запросах HDD вынуждены постоянно "гонять" головки по всей поверхности "блинов" и даже переупорядочивание очереди команд спасает не всегда. Зато в SSD все просто - вычисляем адрес нужного блока и сразу же получаем к нему доступ по чтению/записи. Никаких механических операций не требуется, вс время уходит только на трансляцию адреса и передачу блока данных. Чем быстрее флэш-память, контроллер и внешний интерфейс, тем быстрее доступ к данным. А вот при изменении/стирании данных в SSD накопителе уже не все так просто. Микросхемы NAND флэш-памяти оптимизированы для секторного выполнения операций. Флеш-память пишется блоками по 4 Кбайта, а стирается по 512 Кбайт. При модификации нескольких байт внутри некоторого блока контроллер выполняет следующую последовательность действий: - считывает блок, содержащий модифицируемый блок во внутренний буфер/кеш; - модифицирует необходимые байты; - выполняет стирание блока в микросхеме флэш-памяти; - вычисляет новое местоположение блока в соответствии с требованиями алгоритма перемешивания; - записывает блок на новое место. Как только вы записали информацию, она не может быть перезаписана до тех пор, пока не будет очищена. Проблема заключается в том, что минимальный размер записываемой информации не может быть меньше 4 Кб, а стереть данные можно минимум блоками по 512 Кб. Для этого контроллер группирует и переносит данные для освобождения целого блока (вот тут и сказывается оптимизация операционной системы (ОС) для работы с HDD). При удалении файлов операционная система не производит физическую очистку секторов на диске, а только помечает файлы как удаленные, и знает, что занятое ими место можно заново использовать. Работе самого накопителя HDD это никак не мешает. Хотя такой метод удаления помогает повысить производительность при работе с HDD, но при использовании SSD он становится проблемой. В SSD, как и в традиционных жестких дисках, данные все еще хранятся на диске после того, как они были удалены операционной системой. Но дело в том, что твердотельный накопитель не знает, какие из хранящихся данных являются полезными, а какие уже не нужны и вынужден все занятые блоки обрабатывать по длинному алгоритму.

ПРОГРАММИРОВАНИЕ ВВОДА-ВЫВОДА НА ФИЗИЧЕСКОМ УРОВНЕ.

Статья добавлена: 08.02.2019 Категория: Ремонт ПК

ПРОГРАММИРОВАНИЕ ВВОДА-ВЫВОДА НА ФИЗИЧЕСКОМ УРОВНЕ. Программы - гибкий, высокоэффективный инструмент для поиска неисправности. Заключительный этап поиска неисправности в устройствах компьютера, как правило, требует исследования электронных схем с помощью осциллографа. Это исследование можно производить в устойчивом состоянии электронных схем устройств и программы после отказа. Но наибольший эффект при исследовании осциллографом можно получить, если с помощью программы активизировать исследуемый процесс. Для получения устойчивого изображения динамических сигналов на экране осциллографа необходимо, чтобы исследуемые в данном процессе сигналы повторялись периодически с одной и той же частотой. То есть необходимо циклически повторять исследуемый процесс, а это в большинстве случаев достаточно просто обеспечивается с помощью "зацикливания" программы, запускающей исследуемый процесс. Как получить такую информацию, как: - коды ошибок устройств, формируемые программами-функциями BIOS; - байты состояния устройства, формируемые аппаратурой контроллеров; - содержимое регистра ошибок или регистра состояния контроллера? Обычно, достаточно однократного выполнения в отладчике (например, AFD) небольшой специальной программы, запускающей контролируемый процесс в устройстве. Затем с помощью AFD прочитать, например, байты состояния устройства в области данных BIOS (область ОЗУ от 400h до 500h), регистры ошибок и состояний внешнего устройства, коды ошибок в регистре АН микропроцессора. После анализа полученной диагностической информации планируем дальнейшие действия по локализации неисправности. Многие квалифицированные специалисты по ремонту вычислительной техники относятся к написанию специальных программ с "большой осторожностью". Одни из них считают написание программ очень сложным, а другие - ненужным делом. И те, и другие неправы: во-первых, научиться писать небольшие специальные программы несложно, а во-вторых, отказываться от такого мощного и эффективного инструмента просто неразумно и расточительно. С помощью специальных программ обычную системную плату можно превратить в универсальный стенд для диагностирования и ремонта большинства узлов и устройств компьютера. Умение программировать дает возможность создавать "инструментальные" программные средства, заменяющие аппаратные тестеры, используемые для контроля и диагностики устройств. Стоимость аппаратных тестеров достаточно высока, а их номенклатура невелика. Модификация и их приспособление к конкретному устройству - это сложное и дорогостоящее удовольствие. Разработанные "инструментальные" программные средства, в отличие от аппаратных тестеров, легко модифицируются и приспосабливаются для работы с любым устройством. Программным путем можно задать в устройстве любой необходимый для контроля режим работы, удобно и эффективно осуществлять контроль процессов осциллографом.

Дополнительные дисковые функции.

Статья добавлена: 08.02.2019 Категория: Ремонт ПК

Дополнительные дисковые функции. Дополнительные функции имеют номера 41h-49h и 4Eh. Порядок работы с этими функциями существенно отличается от принятого для стандартных функций прерывания Int 13h : • вся адресная информация передается через буфер в оперативной памяти, а не через регистры; • соглашения об использовании регистров изменены (для обеспечения передачи новых структур данных); • для определения дополнительных возможностей аппаратуры (параметров) используются флаги. ПРИМЕЧАНИЕ Как и «классические» дисковые функции BIOS, дополнительные функции допускают использование режима линейной адресации оперативной памяти. Пакет дискового адреса Фундаментальной структурой данных для дополнительных функций прерывания Int I3h является так называемый «Пакет дискового адреса» (Disk Address Packet). Получив пакет дискового адреса, прерывание Int 13h преобразует содержащиеся в нем данные в физические параметры, соответствующие используемому носителю информации. Формат пакета дискового адреса описан в таблице:

Тайминги памяти.

Статья добавлена: 10.11.2017 Категория: Ремонт ПК

Тайминги памяти. Понятие «таймингов» тесно связано с задержками, возникающими при любых операциях с содержимым ячеек памяти и в связи со вполне конечной скоростью функционирования устройств SDRAM, как и любых других интегральных схем. Задержки, возникающие при доступе в память, также называют «латентностью» памяти. Где именно возникают задержки при операциях с данными, и как они связаны с важнейшими параметрами таймингов памяти? Рассмотрим конкретную схему доступа к данным, содержащимся в ячейках памяти микросхемы SDRAM и также еще несколько иную категорию таймингов, связанных не с доступом к данным, но с выбором номера физического банка для маршрутизации команд по командному интерфейсу модулей памяти класса SDRAM (так называемые «задержки командного интерфейса»).

Интерфейс External SATA (eSATA/ xSATA).

Статья добавлена: 08.02.2019 Категория: Ремонт ПК

Интерфейс External SATA (eSATA/ xSATA). External SATA (eSATA/ xSATA) - интерфейс, предназначенный для подключения внешних устройств хранения данных. SATA вышел на рынок внешних накопителей и предлагает более производительную альтернативу таким внешним интерфейсам, как USB и FireWire. Существует eSATA, а также расширенная версия - xSATA. Версия xSATA позволяет использовать кабель длиной до 8 метров вместо двух. Технология уже интегрируется в современные материнские платы для настольных систем. Интерфейс подключения внешних устройств eSATA или External SATA был создан еще в середине 2004 года. Он поддерживает режим горячей замены (англ. Hot-swap). Основные особенности eSATA:  - разъёмы менее хрупкие и конструктивно рассчитаны на большее число подключений; - требует для подключения два провода: шину данных и силовой кабель (в новых спецификациях решили отказаться от отдельного кабеля питания для выносных eSATA-устройств;  - длина кабеля увеличена до 2 м (по сравнению с 1 метровым у SATA); - средняя скорость передачи данных выше, чем у USB и IEEE 1394; - уменьшены требования к сигнальным напряжениям по сравнению с SATA; - существенно меньше нагружается центральный процессор. 

Подключение ремонтируемых системных плат к стендовому блоку питания (меры предосторожности).

Статья добавлена: 08.02.2019 Категория: Ремонт ПК

Подключение ремонтируемых системных плат к стендовому блоку питания (меры предосторожности). До включения электропитания необходимо произвести измерение сопротивления нагрузки между контактами номиналов вторичного напряжения (например, +5 вольт) и «землей» и др. на разъеме электропитания, что позволяет определить ненормальную (повышенную) нагрузку на источник электропитания, а это может быть вызвано пробоем на землю или источника питания, или одного из выводов микросхемы, запитанной от этого источника (обычно, при прямом и обратном измерении сопротивления между «плюсом» источника вторичного напряжения и землей, должна быть видна разница измеренного сопротивления в соотношении примерно 3:2). Условное название «прямое» подключение означает, что минус клеммы прибора был подсоединен к общему контакту системной платы, а плюс клеммы прибора применялся в конкретной точке замера; условное название «обратное» подключение означает, что плюс клеммы прибора был подсоединен к общему контакту системной платы, а минус клеммы прибора применялся в конкретной точке замера. Как видно из полученных нагрузочных сопротивлений занесенных в таблицу 1, сопротивление нагрузки уменьшается для положительных напряжений, если используется «обратное» подключение измерительного прибора. Для наглядности приведем ниже примеры таких замеров. О возможном замыкании или наличии повышенной нагрузки в цепи питания для устройств, размещенных на данной плате можно судить, используя информацию, полученную измерением сопротивления нагрузок (в прямом и обратном включении омметра) с разъема ATX и ATX -12 вольт (рис. 1, рис. 2).

С чего начать работу по ремонту системной платы ПК?

Статья добавлена: 02.11.2017 Категория: Ремонт ПК

С чего начать работу по ремонту системной платы ПК? Прежде всего, внимательно осмотрите плату, обращая внимание на внешние повреждения, расположение перемычек и джамперов, микропереключателей, кабелей, установленные на плате блоки. Зафиксируйте исходную ситуацию, чтобы при необходимости к ней можно было вернуться. Оцените условия в которых эксплуатировалась системная плата, выясните, были ли попытки отремонтировать ее и, что для этого предпринималось. После включения электропитания оцените и зафиксируйте установки CMOS-памяти, звуковые сообщения POST, сообщения выдаваемые на экран монитора и т. д.). 1) Не позволяйте себе поспешных, непродуманных действий. Не зная причины неисправности, не вносите изменения наугад в надежде на то, что системная плата заработает сама собой. Только действуя осторожно, по детально продуманному плану можно обнаружить неисправный элемент. Никогда не вносите более двух изменений одновременно, так как будет практически невозможно определить источник неисправности. 2) Желательно вести протокол своих действий и записывать результаты поиска по каждой версии (в произвольной форме). Впоследствии внимательный анализ записей может вывести Вас на неисправность или на новую продуктивную версию поиска и определить Ваши дальнейшие действия. 3) Большое значение имеет Ваше правильно организованное рабочее место. Ремонтируемую на рабочем столе системную плату необходимо разместить на изолирующей подставке, которая должна обеспечить устойчивое положение системной платы, возможность установки внешних адаптеров, соединительных кабелей, подключение блока электропитания, доступ к компонентам платы при их контроле измерительной аппаратурой.

Технология ASUS USB BIOS Flashback.

Статья добавлена: 08.02.2019 Категория: Ремонт ПК

Технология ASUS USB BIOS Flashback. Компания ASUS предложила пользователям своих новейших материнских плат простой способ обновления BIOS – ASUS USB BIOS Flashback. Условия: 1. Материнская плата ASUS на чипсете Intel X79/Z77. 2. Блок питания подключен к материнской плате и сети 220В. 3. USB-накопитель ("флэшка") с файловой системой FAT16 или FAT32. Процессор, оперативная память и другие комплектующие не требуются. USB BIOS Flashback – самый простой способ обновления BIOS на материнских платах ASUS. Для обновления теперь достаточно только USB-накопителя с записанным на него файлом BIOS и блока питания. Ни процессор, ни оперативная память и другие комплектующие теперь не нужны. Вы можете обновить BIOS для лучшей совместимости с новым CPU или другими комплектующими. Кнопка BIOS FlashBack. Она как раз пригодится для того, чтобы не вынимать микросхему BIOS и не пользоваться программатором. Достаточно просто записать версию прошивки на USB накопитель, подключить его в соответствующий разъем, запустить систему и нажать кнопку (рис. 1). И тем самым удастся восстановить испорченный BIOS (процедура поддерживается аппаратно). USB BIOS Flashback - это наиболее удобный способ обновления BIOS. Просто подключите USB-флэш носитель и удерживайте эту специальную кнопку в течении 3 секунд. BIOS автоматически обновится в режиме ожидания. 1. Системные требования:

Стр. 31 из 61      1<< 28 29 30 31 32 33 34>> 61

Лицензия