Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 25 из 213      1<< 22 23 24 25 26 27 28>> 213

Источники уточняющей диагностической информации из адаптеров и внешних устройств ПК.

Статья добавлена: 28.05.2021 Категория: Статьи

Источники уточняющей диагностической информации из адаптеров и внешних устройств ПК. Весьма достоверным источником уточняющей диагностической информации являются байты состояния, байты уточненного состояния, коды ошибок - информация из регистров ошибок и регистров состояний. Эта диагностическая информация формируется схемами контроля адаптеров внешних устройств и программами BIOS, которые пишутся высококвалифицированными специалистами. Эта диагностическая информация может быть получена и в результате выполнения специально написанных простых программ тестирования. Коды ошибок, байты состояний, информация в регистрах ошибок и регистрах состояний - формируются аппаратурой контроллеров и являются информацией о конкретных состояниях и ошибках в аппаратуре контроллеров и внешних устройств. Это достоверная опорная информация для поиска ошибок в контроллерах, расположенных на системных платах и во внешних устройствах. Кроме того, дополнительная уточняющая информация может быть получена и в результате использования специально написанных программ активизации сигналов, с проведением исследований электрической схемы с помощью осциллографа. Заключительный этап поиска неисправности в устройствах компьютера, как правило, требует исследования электронных схем с помощью осциллографа. Это исследование можно производить в устойчивом состоянии электронных схем устройств и программы после отказа. Но наибольший эффект при исследовании осциллографом можно получить, если с помощью программы активизировать исследуемый процесс. Для получения устойчивого изображения динамических сигналов на экране осциллографа необходимо, чтобы исследуемые в данном процессе сигналы повторялись периодически с одной и той же частотой. То есть необходимо циклически повторять исследуемый процесс, а это в большинстве случаев достаточно просто обеспечивается с помощью «зацикливания» программы, запускающей исследуемый процесс.

Цветовое зрение человека.

Статья добавлена: 27.05.2021 Категория: Статьи

Цветовое зрение человека. Свет – видимая часть электромагнитного спектра (рис. 1), разновидность электромагнитного излучения, имеющая такую же природу, как рентгеновские лучи, инфракрасное и ультрафиолетовое излучение и радиоволны. Все эти виды излучений различаются длиной волны. Если рентгеновские лучи обладают свойством создавать изображение на покрытой серебром плёнке, радиоволны помогают передавать звук на расстоянии, то световые волны обладают свойством восприниматься человеческим глазом. Глаз способен воспринимать волны длиной от 400 до 700 нанометров (нанометр – одна миллиардная метра, единица измерения длины световых волн). С двух сторон от видимой части спектра находятся ультрафиолетовые и инфракрасные области (рис. 2), которые не воспринимаются человеческим глазом, но могут улавливаться специальным оборудованием. С помощью инфракрасного излучения работают камеры ночного видения, а ультрафиолетовое излучение хоть и невидимо человеческому глазу, но может нанести зрению значительный вред. Световые волны попадают на сетчатку глаза, где воспринимаются светочувствительными рецепторами, передающими сигналы в мозг, и уже там складывается ощущение цвета. Это ощущение зависит от длины волн и интенсивности излучения. Длина волны формирует ощущение цвета, а интенсивность – его яркость. Каждый цвет имеет определённый диапазон длины волн. Самые короткие волны – фиолетовые, самые длинные – красные. А все предметы, которые окружают нас, могут или излучать свет (цвет), или отражать, или пропускать падающий на них свет частично или полностью. Например, если трава зелёная, это значит, что из всего диапазона волн она отражает в основном волны зелёной части спектра, а остальные поглощает.

Магниторезистивные головки (ликбез).

Статья добавлена: 27.05.2021 Категория: Статьи

Магниторезистивные головки (ликбез). В современных устройствах внешней памяти на жестких магнитных дисках большой емкости запись осуществляется сверхминиатюрными магнитными головками (с зазором), выполненными по микронной полупроводниковой технологии. Такие головки позволяют намагничивать предельно малые домены магнитной поверхности, но запись выполняется за счет энергии тока записи достаточной для этого мощности, а вот при считывании, очень слабые поля доменов, при прохождении под зазором головки дают очень слабый электрический сигнал в обмотке считывания. Поэтому в магнитной записи при повышении плотности записи возникает серьезная проблема - при уменьшении размеров магнитных доменов носителя уменьшается уровень считанного сигнала головки и существует вероятность принять шум за «полезный» сигнал. Для решения этой проблемы необходимо иметь более эффективную головку чтения, которая более достоверно сможет определить наличие сигнала от «слабых» полей доменов. Известно, что от воздействия на некоторые материалы внешнего магнитного поля его сопротивление изменяется. Этот эффект был использован для создания считывающих головок нового поколения. Магниторезистивные (Magneto-Resistive - MR) головки являются чувствительными детекторами и регистрируют малейшие изменения в зонах намагниченности преобразуя их в электрические сигналы, которые могут быть интерпретированы как данные. При прохождении обычной головки над зоной смены знака, на выходах обмотки считывания формируется импульс напряжения, а при считывании данных с помощью магниторезистивной головки - ее сопротивление оказывается различным при прохождении над участками с разным значением остаточной (постоянной) намагниченности. Это явление и послужило основой для создания фирмой IBM нового типа считывающих головок. Через головку протекает небольшой постоянный измерительный ток, и при изменении сопротивления изменяется и падение напряжения на ней. Поскольку на основе магниторезистивного эффекта можно построить только считывающее устройство, магниторезистивная головка на самом деле - это две головки, объединенные в одну конструкцию. При этом, записывающая часть, представляет собой обычную индуктивную головку, а считывающая - магниторезистивную.

Структуры диска GPT (MBOOT-защитный MBR, Оглавление, Массив разделов).

Статья добавлена: 19.05.2021 Категория: Статьи

Структуры диска GPT (MBOOT-защитный MBR, Оглавление, Массив разделов). GPT использует современную систему адресации логических блоков (LBA) вместо применявшейся в MBR адресации «Цилиндр — Головка — Сектор» (CHS). Доставшаяся по наследству MBR со всей своей информацией содержится в блоке LBA 0, Оглавление GPT — в блоке LBA 1. В оглавлении содержится адрес блока, где начинается сама таблица разделов, обычно это следующий блок — LBA 2. В случае 64-битной версии ОС Microsoft Windows NT, за таблицей разделов зарезервировано 16384 байт (при использовании сектора размером 512 байт это будет 32 сектора), так что первым используемым сектором каждого жёсткого диска в ней будет блок LBA 34. Кроме того, GPT обеспечивает дублирование — оглавление и таблица разделов записаны как в начале, так и в конце диска. Теоретически, GPT позволяет создавать разделы диска размером до 9,4 ЗБ (9,4 x 1021 байт), в то время как MBR может работать только до 2,2 ТБ (2,2 x 1012 байт). Защитный MBR. В таблице разделов защитного MBR (рис. 1) определён только один раздел с кодом системы EEh, покрывающий собой весь диск. Поле начала этого раздела в формате CHS задаёт цилиндр 0, головку 0 и сектор 2 (первый сектор соответствует самой MBR), поле начала в формате LBA — сектор 1. Поля конца соответствуют последнему сектору физического диска, а если его ёмкость превосходит предел, допускаемый традиционной таблицей разделов, то они содержат значения FFFFFFh для адреса в формате CHS и FFFFFFFFh для адреса в формате LBA. Оглавление GPT. Оглавление (GPT заголовок) расположен в LBA 1. Длина заголовка в будущем может увеличиться, однако он никогда не превысит размер одного физического сектора диска. Для увеличения надёжности хранения данных и устойчивости к сбоям предусмотрена резервная копия заголовка GPT, она хранится в последнем секторе диска. Обе копии заголовка имеют ссылки друг на друга. Оглавление таблицы разделов (рис. 2) указывает те логические блоки на диске, которые могут быть задействованы пользователем (англ. the usable blocks). Оно также указывает число и размер записей данных о разделах, составляющих таблицу разделов. Так на машине с установленной 64-битной ОС Microsoft Windows Server 2003, зарезервировано 128 (80h) записей данных о разделах, каждая запись длиной 128 (80h) байт. Таким образом возможно создание 128 разделов на диске. Оглавление содержит GUID (англ. Globally Unique IDentifier — Глобально Уникальный Идентификатор) диска. В оглавлении также содержится его собственный размер и местоположение (всегда блок LBA 1), а также размер и местоположение вторичного (запасного) оглавления и таблицы разделов, которые всегда размещаются в последних секторах диска. Важно, что оно также содержит контрольную сумму CRC32 для себя и для таблицы разделов. Эти контрольные суммы проверяются процессами EFI при загрузке машины. Из-за проверок контрольных сумм недопустима и бессмысленна модификация содержимого GPT в шестнадцатеричных редакторах (табл.1). Всякое редактирование нарушит соответствие содержания контрольным суммам, после чего EFI перезапишет первичный GPT вторичным. Если же оба GPT будут содержать неверные контрольные суммы, доступ к диску станет невозможным. Поля FirstUsableLBA и LastUsableLBA определяют область диска, доступную для размещения в ней разделов. За пределами этой области находятся лишь структуры данных UEFI, предназначенные для управления разделами, то есть: - MBR, - заголовок GPT, - и массив разделов GPT.

Успех, удача, неудача, причины (мнения древних мудрецов).

Статья добавлена: 17.05.2021 Категория: Статьи

Успех, удача, неудача, причины (мнения древних мудрецов). Успех - это результат решимости, упорства, опыта, энергии, уверенности в себе и такта. Успех – это переход от преодоления одной неудачи к преодолению другой с нарастающим энтузиазмом. Поражение – это когда ты с ним смирился, но если ты с ним не смирился – то это лишь временная неудача. Только та победа является истинной, когда никто не чувствует себя побежденным (Будда). Высокая прибыль - это награда за риск, нововведения, усовершенствования, умную и творческую работу. Ни одна работа, ни одно дело не могут привести к успеху, если они не удовлетворяют чью-то потребность. Если потребность мала, то и успехи будут невелики, если потребность велика, то и отдача будет такой же большой, а чувство удовлетворения и желание сделать еще больше - просто огромными. Успех предприятия - ценная и важная задача для всех сотрудников фирмы. Мы ставим задачу преуспевать, а не вести борьбу за выживание. Успехом можно считать только результаты! Быстрый успех - это удача. Удача вещь капризная, когда она придет и уйдет никто не может сказать! Успех настоящий - это результат умного, упорного труда с расчетом на перспективу. Настоящий успех рождает благополучие многих людей. Предприятия разоряются, рушатся потому что «гниют» изнутри, а руководители и сотрудники (на чьем счету нет никаких конкретных упущений) приводят свою фирму к катастрофе всем, чего они не удосужились сделать для того, чтобы руководить и работать мощно, ярко, быстро вести свой коллектив к четко поставленной цели. Если фирма не заботится о своей репутации, то за нее это сделают другие, причем обязательно выставят ее не в самом лучшем виде. Бизнес - это бурлящий океан и пускаться в плавание по нему на ветхом суденышке со случайными людьми, с необученной командой, без припасов, с неопытным капитаном - это пустое и опасное занятие, которое наверняка плохо кончится. Многие считают, что самое важное в бизнесе - это выбор правильного направления, но прежде чем спорить и определять какой путь избрать в бизнесе, неплохо бы посмотреть с кем и на чем собираются ехать по этому пути. Возможно обветшалая и скрипучая «повозка» совсем не годится для поездок. В пылу споров, о том, что делать и куда двигаться все позабыли о своей «старой телеге», которая давно развалилась стоя на обочине!

Интерфейс IrDA(ликбез).

Статья добавлена: 14.05.2021 Категория: Статьи

Интерфейс IrDA(ликбез). Интерфейс IrDA является беспроводным интерфейсом, в котором используются электромагнитные волны инфракрасного диапазона. Интерфейс позволяет освободить устройства от связывающих их интерфейсных кабелей, что особенно привлекательно для малогабаритной периферии, вес которой и размер соизмеримы с кабелями. В беспроводном интерфейсе IrDA существует способ подключения к локальным сетям на "инфракрасной" технике. Инфракрасная связь безопасна для здоровья, не создает помех в радиочастотном диапазоне и обеспечивает конфиденциальность передачи. ИК-лучи не проходят через стены, поэтому зона приема ограничивается небольшим, легко контролируемым пространством. Применение излучателей и приемников инфракрасного (ИК) диапазона позволяет осуществлять беспроводную связь между парой устройств, удаленных на расстояние до нескольких метров. ИК оптоэлектронные системы создаются из отдельных элементов. Основными оптоэлектронными элементами являются: - источники некогерентного оптического излучения (светоизлучающий диод); - активные и пассивные оптические среды; - приемники оптического излучения (фотодиод); - оптические элементы (линза). На структурной схеме оптоэлектронного прибора (ОЭП), приведенной на рис. 1, наряду с фотоприемниками и излучателями важным компонентом ОЭП являются входные и выходные согласующие электрические схемы, предназначенные для формирования и обработки оптического сигнала. Особенностью этих достаточно сложных, в основном интегральных, схем является компенсация потерь энергии при преобразованиях "электричество - свет" и "свет - электричество", а также обеспечение высокой стабильности и устойчивости работы ОЭП при воздействии внешних факторов. Оптоэлектроника обеспечивает высокую пропускную способность оптического канала, что определяется частотой колебаний на три-пять порядков выше, чем в освоенном радиотехническом диапазоне, а это значит, что во столько же раз возрастает и пропускная способность оптического канала передачи информации. Оптоэлектроника обеспечивает идеальную электрическую развязку входа и выхода, так как в качестве носителя информации используются электрически нейтральные фотоны, что обусловливает бесконтактность оптической связи. Отсюда следуют:

Облачные вычисления.

Статья добавлена: 12.05.2021 Категория: Статьи

Облачные вычисления. Термин «cloud computing» - в переводе означает «облачные вычисления» или «облачная обработка данных». В новейших веяниях и направлениях информационных технологий количество новых и не очень понятных терминов особенно велико. Стороннему наблюдателю часто бывает сложно разобраться, в том, что скрывается за каким то из новомодных слов и словосочетаний, рожденных в лингвистической кузнице ИТ. Термин «облачные вычисления» зародился еще в 1960 году, но обрел актуальность только с лавинообразным развитием Интернета, вместе с ростом скоростей и эволюцией браузеров. Облачные вычисления - это способ предоставления вычислительной мощности на расстоянии. Среди концепций «cloud computing» самой распространенной является SaaS (Software as a Service - программное обеспечение как услуга), когда приложение выполняется не на локальном компьютере пользователя, а на сервере компании-провайдера услуги, а доступ к нему осуществляется через Интернет. Благодаря такой схеме пользователю нет надобности в обладании мощным компьютером, а Google не нужно тратить деньги на производство упаковки, штамповку дисков и поиск каналов сбыта. Теоретически, вычислительные мощности, к которым может получить доступ обычный человек при помощи cloud computing, безграничны. Чтобы конкретизировать определение «облачных вычислений», специалисты этой области часто используют термин SEAP (Service-Enabled Application Platform - платформа с поддержкой приложений как услуг), они предсказывали, что к 2013-2015 годам облачные вычисления станут наиболее предпочтительным способом реализации ИТ-услуг в большинстве крупнейших предприятий мира. В самом начале облачные вычисления предлагалось использовать в качестве Интернет-служб системы управления предприятием и взаимоотношениями с клиентами (ERP и CRM), почтовые серверы, программы для коллективной работы над документами и другое типичное бизнес-ПО. То есть фактически cloud computing позволяет переложить на Интернет классические обязанности локальной технической инфраструктуры компании. А вместе с обязанностями, естественно, перекладывается и головная боль по поводу ее организации, поддержки и развития. Все, что требуется от предприятия, перешедшего на облачные вычисления, — это высокоскоростной канал для подключения к Интернету, набор клиентских компьютеров для эксплуатации удаленных ресурсов и весьма скромная сумма денег для оплаты услуг соответствующих звеньев облачной системы служб. Поскольку при таких раскладах компания не покупает свою ИТ-инфраструктуру, а лишь берет ее в аренду, инвестиции в проект оказываются ощутимо меньшими, нежели при классической организации бизнеса. Такой вариант заманчив прежде всего для малых и средних компаний, особенно в условиях кризисной экономики.

Основные параметры блока питания компьютера.

Статья добавлена: 12.05.2021 Категория: Статьи

Основные параметры блока питания компьютера. При замене блока питания компьютера (или покупке) необходимо обращать внимание на ряд важных для надежной работы системы параметров источника питания: 1) Диапазон изменения входного напряжения (рабочий диапазон), при котором может работать источник питания (для напряжения 110 В диапазон изменения входного напряжения обычно от 95 до 140 В; для 220 В - от 180 до 270 В). 2) Среднее время наработки на отказ, или среднее время безотказной работы, или среднее время работы до первого отказа (параметр MTBF (Mean Time Between Failures) либо MTTF (Mean Time To Failure)). Этот расчетный параметр указывают в часах, в течение этого времени ожидается, что источник питания будет функционировать нормально (например, 100 тыс. часов или более). Фактически изготовители применяют ранее разработанные стандарты, чтобы вычислить вероятность отказов отдельных компонентов источника питания. При вычислении среднего времени безотказной работы для источников питания часто используются данные о нагрузке блока питания и температуре среды, в которой выполнялись испытания. 3) Допустимый пиковый ток включения, обеспечиваемое источником питания в момент его включения (выражается в амперах (А)). 4) Время удержания выходного напряжения в пределах точно установленных диапазонов напряжений после отключения входного напряжения (в миллисекундах). Для современных блоков питания обычно 15-25 мс. 5) Переходная характеристика. Количество времени (в микросекундах), которое требуется источнику питания, чтобы установить выходное напряжение в точно определенном диапазоне после резкого изменения тока на выходе (т.е, количество времени, требуемое для стабилизации уровней выходных напряжений после включения или выключения системы). Источники питания рассчитаны на равномерное (в определенной степени) потребление тока устройствами компьютера. Когда устройства сокращают потребление мощности (например, в дисководе выключается двигатель или в LCD-мониторе выключена лампа задней подсветки), блок питания может в течение короткого времени подать слишком высокое выходное напряжение (это явление называется выбросом). Переходная характеристика - это время, которое источник питания затрачивает на то, чтобы значение напряжения возвратилось к точно установленному уровню. 6) Защита от перенапряжений. Это значения напряжения (для каждого вывода свое), при которых срабатывают схемы защиты и источник питания отключает подачу напряжения на конкретный вывод. Значения обычно указываются в процентах (например, 120% для +3,3 и +5 В) или, как и напряжения (например, +4,6 В для вывода +3,3 В; 7,0 В для вывода +5 В); 7) Максимальный ток нагрузки. Это самое большое значение тока (в амперах), который может быть подан на конкретный вывод (без нанесения ущерба системе). Этот параметр указывает конкретное значение силы тока для каждого выходного напряжения (по этим данным вычисляется общая мощность, которую может выдать блок питания, и количество устройств, которые можно подключить к нему). ...

Ризографы (цифровые дупликаторы).

Статья добавлена: 30.04.2021 Категория: Статьи

Ризографы (цифровые дупликаторы). Японская компания Riso в 1984 году представила комплексную автоматизированную систему, состоящую из термической головки, отвечающей за прожиг микроотверстий в трафаретной пленке печатного устройства. Предварительно «прошитый» автоматической иглой бумажный трафарет наматывался на вращаемый покрасочный цилиндр и прокатывавался по тиражным листам. Это изобретение оказало существенное влияние на деловую и общественную жизнь. С тех пор имя «ризограф» стало нарицательным и несмотря на все усилия конкурирующих компаний, величающих свои устройства «копи-принтерами», «мини-типографиями», «дупринтерами» и «дубликаторами», превратилось, подобно «ксероксу», в общеупотребительное обозначение целого класса множительных машин. Термин «цифровой дупликатор» (одно из значений английского слова duplicate - воспроизводить , повторять в точности) все же более соответствует реальной сущности этого типа устройств. Английское слово duplicate - означает воспроизводить, повторять в точности и соответствует реальной сущности этого типа устройств. Цифровые дупликаторы предназначены для решения проблемы оперативной и недорогой печати небольших и средних тиражей печатной продукции. Цифровые дупликаторы позволяют легко осуществлять тиражирование любых бумажных иформационных материалов с достаточно высоким (до 600 dpi) качеством печатной продукции. Принцип работы этих устройств очень простой: предварительно «прошитый» автоматической иглой бумажный трафарет наматывается на вращаемый покрасочный цилиндр и затем многократно «прокатывавается» по тиражным листам, краска, выдавливаемая через отверстия трафарета, попадает на листы бумаги формируя на них «отпечаток». Дупликатор, представляет собой комплексную автоматизированную систему, содержащую термическую головку, отвечающую за прожиг микроотверстий в трафаретной пленке печатного устройства. Современный цифровой дупликатор представляет собой весьма сложное электронно-механическое устройство, состоящее из четырех основных базовых компонентов: - сканера (планшетного или протяжного), - механизма создания трафаретной пленки («мастера»), - механизма печати, - механизма транспортировки бумаги. С точки зрения пользователя процесс тиражирования на дупликаторе (ризографе) очень прост: вы кладете оригинал в сканер, нажимаете одну кнопку и через 17 секунд (для формата А4) получает контрольный оттиск, а затем печатаете весь необходимый вам тираж со скоростью 60-130 копий в минуту.

Полупроводниковые лазеры в устройствах компьютерной техники.

Статья добавлена: 30.04.2021 Категория: Статьи

Полупроводниковые лазеры в устройствах компьютерной техники. Слово Laser означает Light Amplification by Stimulated Emission of Radiation – усиление света вынужденным излучением, или в русскоязычной терминологии - это оптический квантовый генератор. Энергия лазера представляет собой электромагнитное излучение, которое может быть видимым или невидимым, и представима в виде очень коротких импульсов, называемых фотонами (фотон – минимальная частица энергии). Видимый луч лазера может быть красным или голубым, невидимый луч лазера может быть, например, инфрокрасным. Лазеры широко применяются в различных устройствах компьютерной техники: принтерах, копирах, оптических дисках и др. устройствах.

Контроль GPU видеоадаптера на этапе загрузки системы.

Статья добавлена: 29.04.2021 Категория: Статьи

Контроль GPU видеоадаптера на этапе загрузки системы. Видеокарты имеют свою BIOS, которая подобна системной BIOS, но полностью независима от нее. Если монитор включен то на экране, в самом начале загрузки системы вы сможете увидеть опознавательный знак BIOS видеоадаптера и т. д.. BIOS видеокарты, подобно системной BIOS, хранится в микросхеме ROM; она содержит основные команды (программы), которые предоставляют интерфейс между оборудованием видеоадаптера и программным обеспечением, информацию о видеоадаптере, экранные шрифты и т. д. Программа, которая обращается к функциям BIOS видеокарты, может быть операционной системой или системной BIOS. Обращение к функциям BIOS позволяет вывести информацию о мониторе во время выполнения процедуры POST и начать загрузку системы до начала загрузки с диска любых других программных драйверов. ПЗУ_BIOS не используется видеоконтроллером напрямую — к нему обращается только центральный процессор ПК, но через GPU (через PCIExp и секцию GPIO). Микросхемы SPI-Flash (рис. 1), используют 3 сигнала для приема/передачи данных: SCK (Serial Clock) – вход тактовой частоты; SI (Serial Input) – вход данных (побитно адрес/данные/коды команд; SO (Serial Output) – выход данных (побитно данные/состояние микросхемы). Обращение к ПЗУ BIOS начинается с выдачи активного низкого уровня сигнала на вход CE#. Если на конт.1(вход CE#) наблюдаем импульсы, то «цепочка» : PCIExp, GPU, секция GPIO, SPI интерфейс, ПЗУ_BIOS работает (т. е. CPU выполняет операции чтения из ПЗУ_BIOS).

Звук в персональных компьютерах.

Статья добавлена: 28.04.2021 Категория: Статьи

Звук в персональных компьютерах. Диапазон звуковых частот, который способен слышать человек в очень большой степени зависит от индивидуальных особенностей конкретного человека, его возраста, накопленного опыта распознавания звуков, постоянного общения со звуком. В среднем человек воспринимает звук в диапазоне 20 – 20000 Гц. Колебания очень низкой частоты (инфразвук) воздействуют на человека, хотя он их не слышит, а многие животные слышат инфразвук (особенно собаки). Органы слуха у человека стереофонические, т. е. правое и левое ухо воспринимают звук независимо, поэтому человек способен выделять нужный звуковой сигнал и определять направление на источник сигнала. Человек воспринимает без болевых ощущений звук громкостью до 120 дБ, а при 150 дБ происходит повреждение органов слуха. На частоте звука 10 Гц порог слышимости равен 40дБ, а на частоте 10 кГц – 20 дБ. Наукой установлено, что человек определяет направление на источник звука примерно по одиннадцати параметрам, а современные звуковые технологии объемного звука имитируют только три из них. В реальной звуковой обстановке присутствуют эффекты искажающие звук: эхо, реверберация, поглощение и др. Современные технологии трехмерного звука лишь в небольшой степени способны моделировать эти процессы. Вся музыкальная культура построена на использовании гармонических колебаний (в основном реальный звук состоит из гармоник). В музыке интервал изменения основного тона нотного ряда в два раза обозначили термином «октава» (например, нота «до» второй октавы звучит на удвоенной частоте ноты «до» первой октавы). Средний человек воспринимает диапазон в 10 октав. За счет гармонических колебаний формируется полный частотный диапазон практически всех музыкальных инструментов. При обработке звука (даже цифровыми методами) неизбежно вносятся гармонические искажения в исходный сигнал. На компьютере обработка звука ведется цифровыми методами, так как обеспечить практически стопроцентную повторяемость звука от любой копии записи, можно только на цифровых устройствах, но, в конечном счете, самая сложная цифровая обработка звука заканчивается формированием аналогового сигнала, который превращают в звук. Исходный звук оцифровывают методом импульсно-кодовой модуляции (PCM - Pulse Code Modulation), при котором, например, с частотой дискретизации (принятой для CD-ROM) 44100 Гц в цифровом виде (16 двоичных разрядов обеспечивают охват диапазона 0 - 96 дБ) регистрируется текущая амплитуда звуковой волны. Уровень шумов дискретизации SNR (Signal/Noise Ratio) обычно равен 65-77 дБ и очень сильно зависит от формы и спектра оцифровываемого сигнала. Алгоритм обработки звуковых сигналов в мозге человека очень сложен, существующий метод сжатия, используемый в формате записи звука MPEG Audio Layer 3, упрощенно иммитирует итоговый результат работы мозга при обработке звука. Оцифровывает звуковой и превращает цифровой сигнал обратно в аналоговый - кодек, включающий аналого-цифровой и цифро-аналоговый преобразователи. Кодек выполняет одну из основных функций звуковой карты.

Стр. 25 из 213      1<< 22 23 24 25 26 27 28>> 213

Лицензия