Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Ремонт ПК

Стр. 1 из 44      1 2 3 4>> 44

Развитие интерфейса USB ( USB 4 - Thunderbolt 3).

Статья добавлена: 02.10.2019 Категория: Ремонт ПК

Развитие интерфейса USB ( USB 4 - Thunderbolt 3). Некоммерческая организация USB Implementers Forum объявила о запуске USB 4 — новой версии популярного разъема. Полные спецификации USB 4 будут опубликованы ближе к концу 2019 года. Однако уже сейчас известно, что максимальная пропускная скорость обновленного разъема составит до 40 Гбит/c. Это вдвое больше, чем у USB 3.2 Gen 2×2 и столько же, сколько у Thunderbolt 3 (Type-C), который вышел еще в 2015 году. В USB 4 будет новый базовый протокол, основанный на Thunderbolt 3. Максимальная скорость будет до 40 Гбит/с, сохранится обратная совместимость с USB 3.2, USB 2.0 и Thunderbolt 3. Ожидается, что окончательная спецификация стандарта будет опубликована в середине 2019 года. Пропускная мощность USB 4 составляет 100 Вт, как у Thunderbolt 3. Этой мощности и скорости 40 Гбит/c хватит для подключения двух мониторов с разрешением 4К или одного 5К-дисплея. Во многом USB 4 повторяет характеристики трехлетнего Thunderbolt 3, но обойдётся дешевле производителям железа. А значит, его потенциально задействуют в гораздо большем количестве девайсов. Как и Thunderbolt 3, он будет использоваться не только в компьютерах, но и в мониторах и внешних видеокартах (eGPU). Первые гаджеты с поддержкой USB 4 появится ориентировочно в начале 2020 года.

Изменение и стирание данных в SSD накопителе.

Статья добавлена: 12.09.2019 Категория: Ремонт ПК

Изменение и стирание данных в SSD накопителе. Микросхемы NAND флэш-памяти оптимизированы для секторного выполнения операций. Флеш-память пишется блоками по 4 Кбайта, а стирается по 512 Кбайт. При модификации нескольких байт внутри некоторого блока контроллер выполняет следующую последовательность действий: - считывает блок, содержащий модифицируемый блок во внутренний буфер/кеш; - модифицирует необходимые байты; - выполняет стирание блока в микросхеме флэш-памяти; - вычисляет новое местоположение блока в соответствии с требованиями алгоритма перемешивания; - записывает блок на новое место. Как только вы записали информацию, она не может быть перезаписана до тех пор, пока не будет очищена. Проблема заключается в том, что минимальный размер записываемой информации не может быть меньше 4 Кб, а стереть данные можно минимум блоками по 512 Кб. Для этого контроллер группирует и переносит данные для освобождения целого блока (вот тут и сказывается оптимизация операционной системы (ОС) для работы с HDD). При удалении файлов операционная система не производит физическую очистку секторов на диске, а только помечает файлы как удаленные, и знает, что занятое ими место можно заново использовать. Работе самого накопителя HDD это никак не мешает. Хотя такой метод удаления помогает повысить производительность при работе с HDD, но при использовании SSD он становится проблемой. В SSD, как и в традиционных жестких дисках, данные все еще хранятся на диске после того, как они были удалены операционной системой. Но дело в том, что твердотельный накопитель не знает, какие из хранящихся данных являются полезными, а какие уже не нужны и вынужден все занятые блоки обрабатывать по длинному алгоритму.

Развитие стандартов PCI Express.

Статья добавлена: 10.09.2019 Категория: Ремонт ПК

Развитие стандартов PCI Express. После длительного перерыва после выпуска PCI Express 3.0 в 2010 году PCI Special Interest Group (PCI-SIG) приступила к плану по ускорению разработки и выпуска последовательных стандартов PCIe. Следуя этому плану, в конце 2017 года группа выпустила PCIe 4.0, которая удвоила пропускную способность PCIe 3.0. Спустя менее чем два года после PCIe 4.0 - и с появлением первого аппаратного обеспечения для этого стандарта - группа снова вернулась с выпуском спецификации PCIe 5.0, которая снова удваивает пропускную способность, доступную по каналу PCI Express. Построенный на основе стандарта PCIe 4.0, стандарт PCIe 5.0 является относительно простым расширением 4.0. Последний стандарт еще раз удваивает скорость передачи, которая теперь достигает 32 гига-трансферов в секунду. Что для практических целей означает, что слоты PCIe теперь могут достигать где-то от ~ 4 ГБ / с для слота x1 до ~ 64 ГБ / с для слота x16. Для сравнения, 4 Гб / сек пропускную способность, слот PCIe 1.0 x16, так что в течение последних полутора десятилетий, количество полос, необходимых для достижения такой пропускной способности было сокращено до 1/16 го первоначальной суммы. Самый быстрый стандарт в дорожной карте PCI-SIG на данный момент, более высокие скорости передачи PCIe 5.0 позволят поставщикам сбалансировать будущие проекты между общей пропускной способностью и простотой, работая с меньшим количеством линий. Финальная спецификация стандарта PCI Express 6.0 планируется к публикации в 2021 году. Предполагаемая скорость передачи данных составит 32 Гбайт/с для 4-х линий и 128 Гбайт/с для 16-ти линий.

Ручная пайка компонентов, выполненных по безсвинцовой технологии.

Статья добавлена: 09.09.2019 Категория: Ремонт ПК

Ручная пайка компонентов, выполненных по безсвинцовой технологии. Крупные фирмы-производители интегральных микросхем - Texas Instruments, AMD, Fairchild Semiconductor, Philips и многие другие планируют полностью перейти на бессвинцовые технологии. Так же поступят и производители дискретных полупроводников и пассивных компонентов (ON Semiconductors, Vishay, Samsung Electr-Mechanic). Компоненты, выполненные по традиционной технологии, будут доступны только под заказ. В связи с этим, использование компонентов, не содержащих свинца во всей выпускаемой продукции – это вопрос ближайшего времени для всех производителей электроники. В обозримом будущем данная проблема рано или поздно коснется и всех остальных. Существует мнение о том, что компоненты, не содержащие свинца, требуют особых технологий ручной пайки. Такая точка зрения распространена и среди разработчиков, производителей электронной техники и специалистов, занимающихся ремонтом. Все ведущие производители единодушны в том, что большинство Pb-free компонентов полностью совместимы со стандартными технологиями ручной пайки оловянно-свинцовыми припоями. Совместимость с требованиями RoHS, так же как и знак «Pb-free» не означают, что элемент необходимо паять обязательно бессвинцовым припоем. Но в процессе пайки необходимо предотвратить термодиструкцию электронных компонентов (эта неприятность может возникнуть потому, что большинство из «Pb-free» припоев имеют повышенную температуру плавления, которая несовместима с максимальной температурой пайки выбранных компонентов). Специалисты по технологиям пайки и паяльному оборудования утверждают, что если выполнять ряд рекомендаций для ручной пайки (см. далее), то качество пайки и компоненты электронных схем не пострадают.

Процесс монтажа BGA-компонентов (ликбез).

Статья добавлена: 09.09.2019 Категория: Ремонт ПК

Процесс монтажа BGA-компонентов (ликбез). Подготовка печатной платы. BGA-компоненты в пластиковом корпусе поставляются с припаянными к корпусу шариками из эвтектического припоя 63Sn/37Pb. Этого припоя достаточно для образования качественного соединения. Поэтому для пластиковых корпусов требуется только флюсование контактных площадок платы. Здесь рекомендуется использовать флюс, не требующий смывки, так как удаление его после монтажа компонента затруднено ограниченным доступом к выводам последнего. Несколько сложнее обстоит дело с керамическими корпусами, шарики которых изготовлены из тугоплавкого припоя 90Pb/10Sn. Такой шарик, выполняя только лишь роль опоры для компонента, при пайке не расплавляется. В этом случае можно с помощью трафарета или дозатора нанести на печатную плату паяльную пасту с эвтектическим припоем, который и обеспечит соединение шариков с контактными площадками платы. Более удобным приемом является нанесение паяльной пасты непосредственно на шарики BGA-компонента с помощью приспособления Stenciling Kit фирмы РАСЕ (рис.1). Позиционирование и пайка. Несмотря на экзотический внешний вид, bga-компоненты являются очень технологичными в связи с их способностью к самопозиционированию за счет сил поверхностного натяжения во время расплавления шариков. Именно поэтому, не нужно добиваться сверхточной установки компонента перед пайкой. Вполне достаточно сориентировать корпус по реперным знакам или шелкографическому контуру - то или другое обычно наносится на плату при её изготовлении. Все неточности установки будут устранены силами поверхностного натяжения, когда корпус начнет свободно «плавать» на расплавленных шариках. Если на плате отсутствуют какие-либо ориентиры, используется центрирующая рамка, представляющая собой прямоугольную металлическую пластинку с прямоугольным отверстием по середине. Внешний габарит рамки совпадает с внешним габаритом компонента, а граница внутреннего прямоугольного отверстия совпадают с границей контактных площадок на плате. Техника позиционирования следующая: центрирующая рамка помещается на плату таким образом, чтобы ее внутренний контур лег по периметру поля контактных площадок; компонент вставляется в сопло конвекционной системы ThermoFLo и удерживается вакуумной присоской, расположенной внутри сопла. Затем сопло вместе с компонентом опускается почти до уровня печатной платы. С помощью прецизионного координатного столика плата перемещается в горизонтальной плоскости до точного совмещения внешнего контура рамки и компонента. После выполнения совмещения компонент отводится вверх, а рамка удаляется. Спозиционированный компонент вновь опускается на плату, вакуумная присоска выключается и отводится, сопло устанавливается над компонентом с небольшим зазором для обеспечения «свободного плавания». Запускается цикл нагрева. Система начинает отрабатывать термопрофиль. Горячий воздух подается в сопло под минимальным давлением. Это давление является достаточным только для поддержания над компонентом нужной температуры механическое воздействие воздуха на компонент отсутствует, равно как отсутствует и растекание воздуха по плате, вызывающее нагрев соседних с компонентом участков платы. Благодаря внутренним перегородкам сопла воздух распределяется таким образом, чтобы обеспечить равномерный нагрева компонента, и вытесняется вверх через специальные прорези. После завершения цикла пайки система дает сигнал готовности, а в случае, если выполняется демонтаж, автоматически включается вакуумный захват. Легко видеть, что выполнение при помощи ТhеrmоFlo операций по монтажу и демонтажу bga-компонентов, не вызывает никаких проблем и не требует специальных навыков оператора.

Комплекс PC-3000 Flash.

Статья добавлена: 30.08.2019 Категория: Ремонт ПК

Комплекс PC-3000 Flash. Программно-аппаратный комплекс PC-3000 Flash - это разработка компании "ACE", которая предназначена для восстановления данных с физически и логически неисправных флэш-накопителей, в ситуации, когда доступ к содержимому флэш-микросхем посредством штатного интерфейса, реализуемого контроллером, невозможен. До появления PC-3000 Flash, восстановить данные с флэш-накопителей с поврежденным контроллером можно было путем поиска идентичного контроллера, но с помощью PC-3000 Flash можно читать данные непосредственно с микросхемы памяти NAND и восстановливать их с помощью автоматического или ручного режимов. PC-3000 Flash поддерживает все модели флэш-накопителей (SD, SSD, SM ,MMC, USBFlash, MemoryStick, CompactFlash etc.) с емкостью до 512 Гб. PC-3000 Flash использует уникальные технологии, разработанные специалистами компании ООО НПП «АСЕ», но PC-3000 Flash – это еще и удобный и несложный в обращении программно-аппаратный комплекс с автоматическими режимами и подробным техническим описанием. PC-3000 Flash позволяет восстанавливать данные с флэш-накопителей при серьезных механических повреждениях, повреждениях логической структуры, повреждениях электрической цепи, неисправном контроллере. Кроме того, специализированная beta-версия PC-3000 Flash ver 3.05, поддерживает работу с SSD. Данная версия поддерживает большое количество SSD накопителей c контроллерами: INDILINX Barefoot IDX11OM00-LC, JMICRON JMF601/JMF602. В Систему решений PC-3000 Flash добавлены решения по SSD, которые можно воспроизвести в данной версии комплекса.

Магниторезистивные головки.

Статья добавлена: 26.08.2019 Категория: Ремонт ПК

Магниторезистивные головки. В современных устройствах внешней памяти на жестких магнитных дисках большой емкости запись осуществляется сверхминиатюрными магнитными головками (с зазором), выполненными по микронной полупроводниковой технологии. Такие головки позволяют намагничивать предельно малые домены магнитной поверхности, но запись выполняется за счет энергии тока записи достаточной для этого мощности, а вот при считывании, очень слабые поля доменов, при прохождении под зазором головки дают очень слабый электрический сигнал в обмотке считывания. Поэтому в магнитной записи при повышении плотности записи возникает серьезная проблема - при уменьшении размеров магнитных доменов носителя уменьшается уровень считанного сигнала головки и существует вероятность принять шум за «полезный» сигнал. Для решения этой проблемы необходимо иметь более эффективную головку чтения, которая более достоверно сможет определить наличие сигнала от «слабых» полей доменов. Известно, что от воздействия на некоторые материалы внешнего магнитного поля его сопротивление изменяется. Этот эффект был использован для создания считывающих головок нового поколения. Магниторезистивные (Magneto-Resistive - MR) головки являются чувствительными детекторами и регистрируют малейшие изменения в зонах намагниченности преобразуя их в электрические сигналы, которые могут быть интерпретированы как данные. При прохождении обычной головки над зоной смены знака, на выходах обмотки считывания формируется импульс напряжения, а при считывании данных с помощью магниторезистивной головки - ее сопротивление оказывается различным при прохождении над участками с разным значением остаточной (постоянной) намагниченности. Это явление и послужило основой для создания фирмой IBM нового типа считывающих головок. Через головку протекает небольшой постоянный измерительный ток, и при изменении сопротивления изменяется и падение напряжения на ней. Поскольку на основе магниторезистивного эффекта можно построить только считывающее устройство, магниторезистивная головка на самом деле - это две головки, объединенные в одну конструкцию. При этом, записывающая часть, представляет собой обычную индуктивную головку, а считывающая - магниторезистивную.

Что контролирует технология S.M.A.R.T.?

Статья добавлена: 22.08.2019 Категория: Ремонт ПК

Что контролирует технология S.M.A.R.T.? Технология S.M.A.R.T. позволяет следить за параметрами устройства, фиксировать критические события во внутренних журналах, расположенных в секторах служебных областей диска, считывать эти журналы, а также запускать тесты поверхности по команде от хост-компьютера. Тесты могут исполняться в разных режимах, отличающихся степенью отвлечения винчестера от выполнения операций считывания и записи. Действия по восстановлению, например, плохо читаемых секторов выполняются по инициативе программы хост-компьютера, использующей результаты S.M.A.R.T. Некоторые фирмы используют технологии, в которых действия по тестированию и восстановлению выполняются микроконтроллером винчестера по его инициативе. Например, микроконтроллер самостоятельно выполняет сканирование секторов при отсутствии команд после 8 часов работы двигателя, если от хоста не поступает команд в течение 15 секунд. Секторы с исправимой ошибкой ЕСС проверяются на дефектность поверхности, и если дефекта нет, то перезаписью исправляют сектор, и в дальнейшем он будет читаться нормально. При обнаружении дефекта поверхности секторы заменяются на резервные. Если подается команда от хоста, то сканирование приостанавливается. Оно продолжится с того же места после 15 минут вращения и 15 секунд паузы между командами хоста. Такое фоновое сканирование и самовосстановление диска не снижает скорости обмена с хост-компьютером, а даже несколько увеличивает производительность за счет снижения вероятности повторных считываний секторов, читающихся с неисправимой ошибкой. Кроме того, эта же фирма вводит во все новые диски мониторинг температуры. Термодатчики, расположенные в устройстве, следят за температурой, о превышении первого порога (по умолчанию 60°С) устройство сообщает кодами ошибки 01/0B/01. Температура первого порога может программироваться. Если слежение за температурой в S.M.A.R.T. разрешено, то каждые 25 минут значение температуры записывается в журнале S.M.A.R.T. (страница 2F, ее чтение вызывает немедленное обновление записи замера температуры). По превышению порога частота обновления повышается (раз в 15 минут). По достижении второго порога (65°С) появляется предупреждение о необходимости отключения кодами 01/0B/80. Если разрешено автоматическое отключение, то шпиндельный двигатель будет выключен. Его последующий запуск может быть выполнен с помощью команды «Sterf Unit». По технологии S.M.A.R.T обычно предусматривается автоматическая проверка целостности данных, проверка состояния поверхности пластин, перенос информации с критических участков на нормальные и другие операции без участия пользователя. В случае нарастания фатальных ошибок программа своевременно выдаст сообщение о необходимости принятия срочных мер по спасению данных. Основные положения S.MA.R.T. были согласованы несколько лет назад с участием всех крупных производителей дисков и компьютеров.

UEFI_ПЗУ. Микросхемы SpiFlash памяти с интерфейсами SPI, Dual-SPI, Quad-SPI.

Статья добавлена: 16.08.2019 Категория: Ремонт ПК

UEFI_ПЗУ. Микросхемы SpiFlash памяти с интерфейсами SPI, Dual-SPI, Quad-SPI. Серии микросхем памяти Winbond W25X и WQ имеют популярный последовательный периферийный интерфейс (SPI), плотности от 512 Кбит до 512 Мбит, небольшие стираемые сектора и самую высокую производительность. Семейство W25X поддерживает Dual-SPI, удваивая стандартные частоты SPI. Семейство W25Q является «надстройкой» семейства 25X с Dual-I/O и Quad-I/O SPI с еще большей производительностью. Тактовые частоты до 104 МГц достигают эквивалента 416 МГц (со скоростью передачи данных 50 Мбайт/с) при использовании Quad-SPI. Это более чем в восемь раз превышает производительность обычной последовательно Flash памяти (50 МГц) и даже превосходит асинхронные параллельные Flash памяти при использовании меньшего количества выводов и меньшего места. Существенным недостатком использования ПЗУ была и остается их низкая производительность. Ее помогает обойти использование «теневой памяти» (Shadow RAM) в которую для ускорения доступа копируется BIOS (а теперь и UEFI). Почему бы не попытаться выполнить старт персональной платформы, полностью отказавшись от использования оперативной памяти? Возможности современных реализаций флеш-памяти рассмотрим на примере чипа W25Q64FV, используемого для хранения кода UEFI BIOS. Компания Winbond, разработавшая этот чип, позиционирует его как устройство, способное выполнять программы непосредственно из исходного носителя. Данная технология получила название Execute In Place (XIP) и по идее должна заменить режим Shadow RAM. Расширения SPI-протокола: Dual SPI, Quad SPI.

Особенности функционирования современных винчестеров (ликбез).

Статья добавлена: 09.08.2019 Категория: Ремонт ПК

Особенности функционирования современных винчестеров (ликбез). Электронные схемы диска - это только скелет. Без управляющих микропрограмм она работать не будет. Первые модели винчестеров хранили микропрограммы в ПЗУ, что вызывало естественные неудобства и накладывало определенные ограничения. Теперь же для этой цели используется сам жесткий диск. Разработчик резервирует некоторый объем и размещает в нем весь необходимый код и данные. Информация организована в виде модулей (слабое подобие файловой системы) и управляется специализированной операционной системой. В ПЗУ остается лишь базовый код, своеобразный "фундамент" винчестера. Некоторые производители пошли еще дальше, убрав из ПЗУ все, кроме первичного загрузчика. Само ПЗУ может быть расположено как внутри микроконтроллера, так и на отдельной микросхеме. Практически все винчестеры имеют FLASH-ROM, но не на всех моделях она распаяна. Если FLASH-ROM установлена, то микроконтроллер считывает прошивку из нее, если нет - обращается к своему внутреннему ПЗУ. Все проблемы происходят от информации модулях (и часто от информации, зашитой в ПЗУ), уникальных для каждого экземпляра винчестера и настраиваемых строго индивидуально. В частности, каждый жесткий диск имеет как минимум два списка дефектов - P-list (от Primary - первичный) и G-list (от Grow - растущий). В P-list заносятся номера дефектных секторов, обнаруженные еще на стадии заводского тестирования, а G-list формируется самим жестким диском в процессе его эксплуатации. Если запись в сектор происходит с ошибкой, сбойный сектор переназначается другим сектором, взятым из резервной области. Некоторые жесткие диски поддерживают список "подозрительных секторов": если сектор начинает читаться не с первого раза, он замещается, а информация о замещении сохраняется либо в отдельном списке, либо в G-list'е. Все эти процессы протекают скрыто от пользователя. Специальный модуль, называемый транслятором, переводит физические адреса в номера логических блоков или виртуальные цилиндры-головки-сектора и внешне нумерация секторов не нарушается.

Причины отказов в электронных узлах на печатных платах.

Статья добавлена: 09.08.2019 Категория: Ремонт ПК

Причины отказов в электронных узлах на печатных платах. Давно общеизвестен факт, что отрицательное воздействие внешней среды непосредственно сказывается на показателях надежности печатных узлов и сборок выполненных по современным технологиям. При экстремальных условиях эксплуатации с целью увеличения срока службы и безотказности оборудования на печатные узлы принято наносить защитные покрытия. В зависимости от условий эксплуатации это могут быть акриловые или полиуретановые лаки, силиконовые материалы, эпоксидные смолы. Однако далеко не всегда перед нанесением влагозащитного покрытия должное внимание уделяется обеспечению чистоты поверхности печатного узла. Влагозащита и отмывка печатных узлов: где здесь связь и в чем проблема? Почему так важно обеспечить отсутствие загрязнений на поверхности печатного узла перед нанесением влагозащитного покрытия и как проявляется плохое качество отмывки в процессе эксплуатации? При нанесении влагозащитного покрытия необходимо обеспечить хорошую адгезию покрытия к печатному узлу, так как это позволит гарантировать высокую надежность и долговечность влагозащитного покрытия. Канифольные остатки флюса и активаторы в ряде случаев оказываются несовместимыми с применяемыми влагозащитными материалами и могут привести к значительному уменьшению адгезии. В результате происходит отшелушивание или отслаивание покрытия, ухудшение влагозащитных характеристик. Поэтому для обеспечения хорошей адгезии влагозащитного покрытия высокая чистота печатного узла является необходимым условием. Принимая решение о необходимости отмывки перед нанесением влагозащиты, также важно понимать, что современные покрытия являются препятствием для сконденсировавшейся влаги и молекул загрязнений, но, в то же время, они «запирают» загрязнения, имеющиеся на поверхности печатного узла. Это означает, что не отмытые остатки флюса, а также другие загрязнения после нанесения влагозащитного покрытия остаются на поверхности печатного узла и сохраняют свои свойства на протяжении всего периода хранения и использования изделия. При нормальных условиях эксплуатации данное явление не представляет серьезной опасности. Но при эксплуатации в условиях повышенной влажности, воздействия солевого тумана, перепадов температур, запертые внутри загрязнения становятся существенной угрозой надежности изделия. Разрушительные механизмы на поверхности не отмытого печатного узла под влагозащитным покрытием могут быть спровоцированы различными факторами воздействия окружающей среды. Но результатом таких процессов, как правило, являются следующие дефекты: - отслаивание влагозащитного покрытия (рис. 1); - токи утечки между проводниками; - уменьшение поверхностного сопротивления изоляции; - коррозионное разрушение печатного узла; - рост дендритов между проводниками, приводящий к короткому замыканию (рис. 2).

Методы и средства проведении чистки ПК.

Статья добавлена: 08.08.2019 Категория: Ремонт ПК

Методы и средства проведении чистки ПК. Средства для чистки и смазки контактов похожи на универсальные очистители, но содержат дополнительные смазывающие ингредиенты. Усилия, прилагаемые к кабелям и разъемам со смазанными контактами в процессе их стыковки и расстыковки, существенно уменьшаются, а тонкая пленка смазки на контактах, кроме того, играет роль проводящего антикоррозийного покрытия. Пользуясь такими растворами, вы существенно снижаете вероятность нарушений контактов, а это продлевает срок безотказной службы системы в целом. Подобные средства особенно эффективны для обработки разъемов шин ввода-вывода, печатных и штыревых разъемов плат адаптеров, разъемов для подключения дисководов, блока питания и практически для всех разъемов в компьютере (хорошим смазочным средством для контактов является Stabilant 22). Для удаления пыли в системе очень эффективен баллончик (или компрессор) со сжатым газом, с помощью которого пыль можно легко сдуть с различных поверхностей узлов и деталей (эти баллончики ранее заполнялись фреоном, а сейчас заполняются фторсодержащими углеводородами или углекислым газом, которые инертны по отношению к озоновому слою). При работе необходимо помнить, что в процессе расширения газов при выходе их из сопла на поверхности баллона может накапливаться большой электростатический заряд, и надо соблюдать необходимые меры предосторожности. При работе с компьютерами всегда используйте только специально предназначенное для этих целей оборудование, так как подобные приспособления используются и для чистки кино- и фотоаппаратуры, но они не всегда соответствуют требованиям электростатической безопасности. К приспособлениям, в которых используется сжатый газ, относятся и баллончики с охлаждающими жидкостями, но они предназначены скорее, для ремонта, а не для профилактики. Часто неисправность компонента проявляется лишь после его нагрева, а охлаждение на время восстанавливает его работоспособность. Охлаждающей жидкостью его можно быстро остудить. Если схема после этого начинает работать правильно, считайте, что неисправный элемент найден.

Стр. 1 из 44      1 2 3 4>> 44

Лицензия