Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по мониторам

Стр. 1 из 24      1 2 3 4>> 24

Контроль активности GPU на этапе загрузки системы.

Статья добавлена: 26.04.2019 Категория: Статьи по мониторам

Контроль активности GPU на этапе загрузки системы. Видеокарты имеют свою BIOS, которая подобна системной BIOS, но полностью независима от нее Если монитор включен то на экране, в самом начале загрузки системы вы сможете увидеть опознавательный знак BIOS видеоадаптера и т. д.. BIOS видеокарты, подобно системной BIOS, хранится в микросхеме ROM; она содержит основные команды (программы), которые предоставляют интерфейс между оборудованием видеоадаптера и программным обеспечением, информацию о видеоадаптере, экранные шрифты и т. д. Программа, которая обращается к функциям BIOS видеокарты, может быть операционной системой или системной BIOS. Обращение к функциям BIOS позволяет вывести информацию о мониторе во время выполнения процедуры POST и начать загрузку системы до начала загрузки с диска любых других программных драйверов. ПЗУ_BIOS не используется видеоконтроллером напрямую — к нему обращается только центральный процессор ПК, но через GPU (через PCIExp и секцию GPIO).

Интерфейс eDP (Embedded DisplayPort).

Статья добавлена: 16.04.2019 Категория: Статьи по мониторам

Интерфейс eDP (Embedded DisplayPort). Интерфейс еDP - это универсальный встраиваемый дисплейный интерфейс для мобильных устройств. eDP 1.4b представляет собой новейший стандарт VESA Embedded DisplayPort. Версия интерфейса eDP 1.4b, вносит изменения только в протокол Selective Update, тогда как максимальная скорость каждой из четырёх линий интерфейса сохранена на уровне 8,1 Гбит/с. Внесённые изменения позволят упростить схемотехнику интерфейса, включая драйверы и буферы для временного хранения кадров (рис. 1). Всё это направлено на снижение стоимости элементной базы, необходимой для изготовления дисплеев с поддержкой встроенного стандарта DisplayPort.

Интерфейсы LCD-панелей. Цифровой, LVDS, LDI.

Статья добавлена: 11.04.2019 Категория: Статьи по мониторам

Интерфейсы LCD-панелей. Цифровой, LVDS, LDI. Количество отказов LCD-панелей, происходит все чаще, и перед специалистами сервисных служб встает вопрос о методах диагностики жидкокристаллических матриц. Одним из первых, в этом случае, диагностируется внешний интерфейс, через который на LCD-матрицу передаются все данные. Данные, передаваемые на LCD-панель, формируются на основной (микропроцессорной) плате монитора, а именно, на выходе микросхемы скалера и передаются на панель с использованием соответствующего интерфейса. Этот интерфейс представляет значительный практический интерес для специалиста, осуществляющего диагностику монитора, так как позволяет достаточно точно определить местоположение проблемы - на главной плате монитора или внутри LCD-панели.

Графический процессор (ликбез).

Статья добавлена: 12.03.2019 Категория: Статьи по мониторам

Графический процессор (ликбез). Графический процессор (англ. graphics processing unit, GPU) — отдельное устройство персонального компьютера или игровой приставки, выполняющее графический рендеринг. В начале 2000-х годов графические процессоры стали массово применяться и в других устройствах: планшетные компьютеры, встраиваемые системы, цифровые телевизоры. Современные графические процессоры очень эффективно обрабатывают и отображают компьютерную графику. Благодаря специализированной конвейерной архитектуре они намного эффективнее в обработке графической информации, чем типичный центральный процессор. Графический процессор в современных видеоадаптерах применяется в качестве ускорителя трёхмерной графики. GPU. Графический процессор может применяться как в составе дискретной видеокарты, так и в интегрированных решениях (встроенных в северный мост либо в гибридный процессор). Отличительными особенностями по сравнению с ЦП являются: - архитектура, максимально нацеленная на увеличение скорости расчёта текстур и сложных графических объектов; - ограниченный набор команд. Высокая вычислительная мощность GPU объясняется особенностями архитектуры. Современные CPU содержат несколько ядер, тогда как графический процессор изначально создавался как многопоточная структура с множеством ядер. Разница в архитектуре обусловливает и разницу в принципах работы. Если архитектура CPU предполагает последовательную обработку информации, то GPU исторически предназначался для обработки компьютерной графики, поэтому рассчитан на массивно параллельные вычисления. Каждая из этих двух архитектур имеет свои достоинства. CPU лучше работает с последовательными задачами. При большом объёме обрабатываемой информации очевидное преимущество имеет GPU. Условие только одно — в задаче должен наблюдаться параллелизм. Графические процессоры уже достигли той точки развития, когда многие практические вычислительные задачи могут с легкостью решаться с их помощью, причем быстрее, чем на многоядерных системах. Будущие вычислительные архитектуры станут гибридными системами с графическими процессорами, состоящими из параллельных ядер и работающими в связке с многоядерными ЦП (профессор Джек Донгарра, 2011 г.). Современные модели графических процессоров (в составе видеоадаптера) могут полноценно применяться для общих вычислений (см.GPGPU). Примерами таковых могли служить чипы HD 7990 (от AMD) или GTX 690 (от nVidia). GPGPU. GPGPU (англ. General-purpose computing for graphics processing units, неспециализированные вычисления на графических процессорах) — использование графического процессора видеокарты для параллельных вычислений. Современные графические адаптеры могут иметь до нескольких тысяч процессоров, что позволяет решать некоторые задачи на графических картах на порядок быстрее, чем на центральных процессорах. Приложения, использующие данную технологию пишутся с помощью таких технологий как OpenCL или CUDA. Внешний графический процессор (eGPU). Внешний графический процессор — это графический процессор, расположенный за пределами корпуса компьютера. Внешние графические процессоры иногда используются совместно с портативными компьютерами. Ноутбуки могут иметь большой объём оперативной памяти (RAM) и достаточно мощный центральный процессор (CPU), но часто им не хватает мощного графического процессора, вместо которого используется менее мощный, но более энергоэффективный встроенный графический чип. Встроенные графические чипы обычно недостаточно мощны для воспроизведения новейших игр или для других графически интенсивных задач, таких как редактирование видео. Поэтому желательно иметь возможность подключать графический процессор к некоторой внешней шине ноутбука. PCI Express — единственная шина, обычно используемая для этой цели. Порт может представлять собой, к примеру, порт ExpressCard или mPCIe (PCIe × 1, до 5 или 2,5 Гбит / с соответственно) или порт Thunderbolt 1, 2 или 3 (PCIe × 4, до 10, 20 или 40 Гбит/с соответственно). Эти порты доступны только для некоторых ноутбуков. Внешние GPU не пользовались большой официальной поддержкой поставщиков. Однако это не остановило энтузиастов от внедрения настроек eGPU.

Программный инструмент. Принципы управления внешними устройствами ПК.

Статья добавлена: 11.03.2019 Категория: Статьи по мониторам

Программный инструмент. Принципы управления внешними устройствами ПК. Многие квалифицированные специалисты по ремонту компьютерной техники относятся к написанию специальных программ с "большой осторожностью". Одни из них считают написание программ очень сложным, а другие - ненужным делом. И те, и другие неправы: во-первых, научиться писать небольшие специальные программы несложно, а во-вторых, отказываться от такого мощного и эффективного инструмента просто неразумно и расточительно. С помощью специальных программ обычную системную плату можно превратить в универсальный стенд для диагностирования и ремонта большинства узлов и устройств компьютера. Умение программировать дает возможность создавать "инструментальные" программные средства, заменяющие аппаратные тестеры, используемые для контроля и диагностики устройств. Стоимость аппаратных тестеров достаточно высока, а их номенклатура невелика. Модификация и их приспособление к конкретному устройству - это сложное и дорогостоящее удовольствие. Разработанные "инструментальные" программные средства, в отличие от аппаратных тестеров, легко модифицируются и приспосабливаются для работы с любым устройством. Программным путем можно задать в устройстве любой необходимый для контроля режим работы, удобно и эффективно осуществлять контроль процессов осциллографом.

Видеопамять. Стандарт HBM.

Статья добавлена: 06.03.2019 Категория: Статьи по мониторам

Видеопамять. Стандарт HBM. Видеопамять используется для временного сохранения, помимо непосредственно данных изображения, и других: текстуры, шейдеры, вершинные буферы, Z-буфер (удалённость элементов изображения в 3D-графике), и тому подобные данные графической подсистемы (за исключением, по большей части данных Video BIOS, внутренней памяти графического процессора и т. п.) и коды. HBM обеспечивает более высокую пропускную способность при меньшем расходе энергии и существенно меньших размерах по сравнению с DDR4 или GDDR5, GDDR6. Это достигается путём объединения в стек до восьми интегральных схем DRAM (включая опциональную базовую схему с контроллером памяти), которые соединены между собой с помощью сквозных кремниевых межсоединений (англ. Through-silicon via) и микроконтактных выводов (англ. Microbumps). Stacked DRAM — размещении чипов памяти слоями, с одновременным доступом к разным микросхемам, что расширяет шину памяти, значительно повышая пропускную способность и немного снижая задержки. Шина НВМ-памяти обладает существенно большей шириной по сравнению с памятью DRAM, в частности, НВМ-стек из четырёх кристаллов DRAM (4-Hi) - имеет два 128-битных канала на кристалл — в общей сложности 8 каналов и ширину в 1024 бита (рис. 1).

Назначение сигналов и контактов микросхем памяти GDDR5.

Статья добавлена: 05.03.2019 Категория: Статьи по мониторам

Назначение сигналов и контактов микросхем памяти GDDR5. GDDR5 - современный и быстрый тип видеопамяти, радикальное отличие от GDDR4 заключается в раздельном тактировании линий передачи данных и адресов: - команды передаются в режиме SDR (стандартная тактовая частота) на частоте CK, - адреса передаются в режиме DDR (Double Data Rate) на частоте CK, - данные передаются в режиме DDR на частоте WCK (которая в 2 раза выше CK), т.е. за один такт такая память передает 2 бита адресов и 4 бита данных (см. рис. 1). Также GDDR5 память отличается наличием эффективных средств снижения энергопотребления, и сейчас используется во всех производительных видеокартах AMD и nVidia. Кстати, эти производители указывают разные частоты для памяти - Nvidia указывает частоту WCK, а AMD - частоту CK. GDDR5 — предпоследнее поколение графической памяти стандарта DDR SDRAM. GDDR5 быстрее, чем GDDR3. GDDR3 соответствует типу памяти DDR2, GDDR5 соответствует DDR3. Максимальная эффективная частота GDDR5 выше. GDDR5 энергоэкономичнее, чем GDDR3. Видеокарты с GDDR5 дороже и принадлежат к среднему и высшему сегментам. Перечень сигналов GDDR5 (см. рис. 2):

Электроника - это наука о контактах. Чистка контактов.

Статья добавлена: 28.02.2019 Категория: Статьи по мониторам

Электроника - это наука о контактах. Чистка контактов. Существует множество разновидностей универсальных очистителей. Сейчас в связи с ужесточением мер по защите окружающей среды чаще всего применяются различные спирты, ацетон или другие вещества, не вызывающие разрушения озонового слоя. Прежде чем воспользоваться каким-либо раствором, удостоверьтесь в том, что он предназначен для чистки именно электронных устройств. Это требование обычно сводится к тому, что вещество должно быть химически чистым и не содержать нежелательных примесей. Например, не следует протирать электронные компоненты и контакты спиртом, купленным в аптеке, потому что он не является химически чистым, а из-за того, что он содержит воду и ароматизаторы. В растворах для чистки не должно быть воды и осадков. Лучше использовать их в жидком виде, а не в аэрозоле. Распыление вещества обычно довольно расточительное занятие, поскольку вы никогда не сможете попасть им только в необходимое место, лучше использовать губку или кусочек замши. Растворы для чистки электронных компонентов продаются в любом специализированном магазине. Средства для чистки и смазки контактов похожи на универсальные очистители, но содержат дополнительные смазывающие ингредиенты. Усилия, прилагаемые к кабелям и разъемам со смазанными контактами в процессе их стыковки и расстыковки, существенно уменьшаются, а тонкая пленка смазки на контактах, кроме того, играет роль проводящего антикоррозийного покрытия. Пользуясь такими растворами, вы существенно снижаете вероятность нарушений контактов, а это продлевает срок безотказной службы системы в целом. Подобные средства особенно эффективны для обработки разъемов шин ввода-вывода, печатных и штыревых разъемов плат адаптеров, разъемов для подключения дисководов, блока питания и практически для всех разъемов в компьютере. Для удаления пыли в системе очень эффективен баллончик (или компрессор) со сжатым газом, с помощью которого пыль можно легко сдуть с различных поверхностей узлов и деталей (эти баллончики ранее заполнялись фреоном, а сейчас заполняются фторсодержащими углеводородами или углекислым газом, которые инертны по отношению к озоновому слою). При работе необходимо помнить, что в процессе расширения газов при выходе их из сопла на поверхности баллона может накапливаться большой электростатический заряд, и надо соблюдать необходимые меры предосторожности. При работе с компьютерами всегда используйте только специально предназначенное для этих целей оборудование, так как подобные приспособления используются и для чистки кино- и фотоаппаратуры, но они не всегда соответствуют требованиям электростатической безопасности.

Экран планшета.

Статья добавлена: 21.02.2019 Категория: Статьи по мониторам

Экран планшета. В описании планшетов обычно присутствуют следующие параметры: - размер экрана; - разрешение; - тип матрицы: AMOLED, IPS, и пр.; - углы обзора; - защитное покрытие, - тип сенсорного экрана. Размер экрана (от 4.0 до 13.3" ). Размер экрана является одним из важнейших параметров при выборе планшета. Экраны планшетов традиционно измеряются по диагонали, а сам размер исчисляется в дюймах. Чем больше экран, тем комфортнее воспринимать с него визуальную информацию. С другой стороны, большой экран увеличивает габариты и вес устройства. Здесь все просто и понятно. Планшет с большим экраном (9.7 – 10.1 дюйма и более) подойдет тем, кто собирается работать с документами, читать книги, общаться в интернете. Такие планшеты – это скорее домашние или офисные устройства – носить постоянно с собой их неудобно. А вот почитать на диване книгу или посмотреть фильм приятнее всего на устройстве с большим экраном. Более компактные планшеты, с экраном 7 – 8 дюймов по диагонали, идеально подойдут тем, кто предпочитает (или кому приходится) все это делать вне дома – в метро, купе поезда, в отпуске или командировке. Семидюймовый планшет при желании можно уместить в кармане брюк или небольшой дамской сумочке. Модели с диагональю 5—7 дюймов более компактны и подходят для тех, кто постоянно носит планшет с собой.

API Vulkan.

Статья добавлена: 20.02.2019 Категория: Статьи по мониторам

API Vulkan. API Vulkan от Khronos Group (Vulkan - это графический и вычислительный API нового поколения, который обеспечивает высокопроизводительный кросс-платформенный доступ к современным графическим процессорам, используемым в самых разных устройствах от ПК и консолей до мобильных телефонов и встроенных платформ). API Vulkan изначально был известен как «новое поколение OpenGL» или просто «glNext», но после анонса компания отказалась от этих названий в пользу названия Vulkan. Спецификация Vulkan 1.1 была запущена в марте 2018 года, чтобы расширить основные функциональные возможности Vulkan с функциями, запрошенными разработчиками, такими как операции с подгруппами, а также интегрировать широкий спектр проверенных расширений от Vulkan 1.0. 2018 год для игровой индустрии положил начало внедрению трассировки лучей в реальном времени: многие крупные компании и разработчики трудятся над решением этой проблемы. Очередным шагом NVIDIA в этой области стала работа над расширением для API Vulkan, которое, по аналогии с RTX для DXR, позволит использовать в играх трассировку лучей. NVIDIA работает над переносом своей технологии RTX в Vulkan через расширение VK_NV_raytracing, которое хорошо совместимо с открытым графическим API. Компания предложила свой метод группе Khronos и стремится к стандартизации технологии трассировки лучей в реальном времени в рамках Vulkan. Другими словами, в перспективе такой метод сможет работать как на ускорителях GeForce, так и на Radeon и даже Intel Graphics (если будут достаточно мощные решения). NVIDIA подчёркивает, что структура близка к Microsoft DXR, что упростит жизнь разработчикам (DXR - это расширение программного интерфейса DirectX 12 новым компонентом DirectX Raytracing API (DXR). Благодаря данным технологиям разработчики смогут применять трассировку лучей в реальном времени для создания реалистичных графических эффектов в играх).

Что такое сенсорный экран? (ликбез).

Статья добавлена: 19.02.2019 Категория: Статьи по мониторам

Что такое сенсорный экран? (ликбез). Сенсорный экран (от англ. touch screen) - это координатное устройство, позволяющее путем прикосновения (пальцем, стилусом и т.п.) к области экрана монитора производить выбор необходимого элемента данных, меню или осуществлять ввод данных в различных компьютерных системах. Сенсорные экраны наиболее пригодны для организации гибкого интерфейса, интуитивно понятного даже далеким от техники пользователям. С распространением карманных, планшетных компьютеров, устройств для чтения электронных книг и различных терминалов сенсорные экраны стали такими же привычными, как кнопка и колесо. За прошедший период развития сенсорных экранов было разработано несколько типов этих устройств ввода, основанных на различных физических принципах, которые используются для определения места касания. В настоящее время наибольшее распространение получили два типа дисплеев — резистивные и емкостные. Помимо этого различают экраны, способные регистрировать одновременно несколько нажатий (Multitouch) или только одно. Сенсорные экраны используют всего четыре основных базовых принципа построения: резистивный, емкостный, акустический и инфракрасный (разные источники выделяют шесть, а иногда и семь технологий, по которым производятся сенсорные экраны).

Технологии Plug&Play видеосистем (ликбез).

Статья добавлена: 18.02.2019 Категория: Статьи по мониторам

Технологии Plug&Play видеосистем (ликбез). Для идентификации мониторов ассоциацией VESA был предложен стандарт DDC (Display Data Chanel), который позволяет определять мониторы различных производителей, и, кроме того, позволяет получать и другую информацию о параметрах и характеристиках любого монитора. Разработка стандарта DDC была обусловлена развитием технологии Plug&Play, которая подразумевает, что внешнее устройство должно “сообщить” о себе основные сведения для того, чтобы операционная система обеспечила правильное конфигурирование и настройку оборудования путем поиска и установки наиболее подходящего драйвера устройства. Для оптимальной настройки изображения необходимо учитывать размер экрана, тип монитора, его цветовые характеристики, поддерживаемые режимы (разрешающая способность), параметры входных сигналов, а, кроме того, желательно знать поддерживается ли монитором система энергосбережения DPMS. В стандарте DDC вся информация о мониторе передается из монитора в ПК по последовательному интерфейсу, состоящему из двух линий: линии синхронизации и линии данных. При разработке DDC в качестве основы был применен интерфейс I2C, линия синхронизации интерфейса в DDC получила название DDC_CLK. На этой линии формируется последовательность импульсов, тактирующих передачу данных. Для передачи каждого байта на линии DDC_CLK генерируется девять импульсов: 8 – для передачи битов байта и 1 – бит подтверждения – ACK (квитирующий бит). Тактовые сигналы формируются устройством, запрашивающим информацию (ведущим устройством), т.е. видеокартой ПК. Частота импульсов DDC_CLK могла быть любой – был ограничен только ее верхний предел величиной до 400 кГц. Линия данных интерфейса DDC получила название DDC_DATA. На этой линии сигнал устанавливается либо в “высокий”, либо в “низкий” уровень, в зависимости от передаваемых данных, с частотой следования тактовых импульсов DDC_CLK.

Стр. 1 из 24      1 2 3 4>> 24

Лицензия