Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по мониторам

Стр. 1 из 20      1 2 3 4>> 20

BIOS видеосистемы(ликбез).

Статья добавлена: 09.04.2018 Категория: Статьи по мониторам

BIOS видеосистемы(ликбез). Дисплейный адаптер, как обязательный компонент персонального компьютера, имеет поддержку основных функций в BIOS (программа BIOS – это программа реализующая свою функцию управления устройством на «физическом» уровне, т. е. на уровне регистров и команд его контроллера). У каждого устройства есть свой комплект программ BIOS. Эти функции выполняются через вызов программного прерывания по команде INT n, например через INT 10h – для программ BIOS видеосистемы. Видеосервис позволяет установить видеорежим (BIOS Video Mode), определяющий формат экрана. Первоначально для задания номера режима отводился один байт, и режим устанавливался параметром функции 0 INT 10h (АН=0, AL=Mode). Режимы 0-13h являлись стандартными для «старых» адаптеров (MDA, CGA, EGA, VGA). Режимы 14h - 7Fh использовались с VGA- или SVGA-расширениями BIOS, они были специфичны для конкретных моделей графических адаптеров. Позже появилось стандартизованное расширение функций видеосервиса VBE (VESA BIOS Extensions) для адаптеров VGA и SVGA были определены и новые видеорежимы с двухбайтными номерами старше l00h. Эти режимы устанавливаются параметром функции 4F02h INT 10h (AX=4F02h, BX=VMode). В пределах возможностей установленного видеорежима, видеосервис предоставляет возможности отображения информации на различных уровнях.

Что определяет качество изображения монитора?(ликбез).

Статья добавлена: 21.03.2018 Категория: Статьи по мониторам

Что определяет качество изображения монитора?(ликбез). Скорость, с которой информация поступает на экран, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов: - разрешение вашего монитора; - количество цветов, из которых можно выбирать при создании изображения; - частота, с которой происходит обновление экрана. Разрешение определяется количеством пикселов на линии и количеством самих линий. Поэтому, на дисплее, например, с разрешением 1024х768, изображение формируется каждый раз при обновлении экрана из 786432 пикселов информации. Обычно, частота обновления экрана имеет значение не менее 75Hz или циклов в секунду. Следствием мерцания экрана является зрительное напряжение и усталость глаз при длительном наблюдении за изображением. Для уменьшения усталости глаз и улучшения эргономичности изображения, значение частоты обновления экрана должно быть достаточно высоким, не менее 75 Hz. Число допускающих воспроизведение цветов или глубина цвета это десятичный эквивалент двоичного значения количества битов на пиксел. Так, 8 бит на пиксел эквивалентно 28 или 256 цветам, 16 битный цвет, часто называемый просто high-color, отображает более 65000 цветов, а 24 битный цвет, также известный, как истинный или true color, может представить 16,7 миллионов цветов. Но 32 битный цвет, с целью избежать путаницы, обычно означает отображение истинного цвета с дополнительными 8 битами, которые используются для обеспечения 256 степеней прозрачности. Так, в 32 битном представлении каждый из 16,7 миллионов истинных цветов имеет дополнительные 256 степеней доступной прозрачности. Такие возможности представления цвета имеются только в системах высшего класса и графических рабочих станциях.

История технологии SLI и CrossFire.

Статья добавлена: 13.03.2018 Категория: Статьи по мониторам

История технологии SLI и CrossFire. Технологии SLI продвигаются компанией NVIDIA, а главный конкурент на рынке видеоускорителей, компания ATI, разработала и внедрила свое аналогичное решение - технологию CrossFire. Так же, как и SLI от NVIDIA, она позволяет объединять ресурсы двух (и более) видеокарт в одном компьютере между собой, повышая производительность видеоподсистемы.

Графика процессоров Skylake.

Статья добавлена: 12.03.2018 Категория: Статьи по мониторам

Графика процессоров Skylake. С ростом популярности новых форматов видео графическое ядро Skylake расширило возможности по его аппаратному кодированию и декодированию. Теперь средствами движка Quick Sync стало можно кодировать и декодировать контент в формате H.265/HEVC с 8-битной глубиной цвета, а с привлечением исполнительных устройств GPU – декодировать H.265/HEVC-видео и с 10-битным представлением цвета. К этому добавилась и полностью аппаратная поддержка кодирования в форматах JPEG и MJPEG. Графика Skylake относится к новому, девятому поколению, в ней сделаны существенные изменения в части поддерживаемых графических API. На данный момент в GPU новых процессоров есть совместимость с DirectX 12, OpenGL 4.4 и OpenCL 2.0, а позднее, по мере совершенствования графического драйвера, к этому списку добавили версии OpenCL 2.x и OpenGL 5.x, а также поддержку низкоуровневого фреймворка Vulkan. В новом GPU реализована полноценная когерентность памяти с процессором, что делает Skylake самым настоящим APU – его графическое и вычислительные ядра могут одновременно работать над одной и той же задачей, используя общие данные.

Варианты построения блоков питания LCD мониторов.

Статья добавлена: 06.03.2018 Категория: Статьи по мониторам

Варианты построения блоков питания LCD мониторов. В LCD мониторах могут применяться внутренние и внешние источники питания. Внутренний источник питания, расположен в корпусе монитора и, как правило, представляет собой импульсный преобразователь, преобразовывающий переменное напряжение сети в несколько выходных шин питания постоянного тока (см. рис. 1). Отличительной особенностью LCD-дисплеев с внутренним источником является наличие внешнего разъем 220В для подключения силового сетевого кабеля. Основным недостатком такой компоновки монитора является наличие внутри его высоковольтного мощного импульсного преобразователя, который может самым негативным образом влиять на работу самого монитора. В случае внешнего источника питания в комплекте вместе с монитором поставляется внешний сетевой адаптер, который представляет собой отдельный модуль преобразования переменного напряжение сети в необходимое постоянное напряжение номиналом порядка 12-24В (см. рис. 2). Схемотехнически он представляет собой точно такой же импульсный преобразователь, как и во внутреннем блоке питания. Такое решение компоновки позволяет исключить из состава LCD монитора силовой каскад, что в конечном итоге повышает надежность изделия, а также качество отображаемой информации.

Принцип работы TFT LCD-мониторов (ликбез).

Статья добавлена: 05.03.2018 Категория: Статьи по мониторам

Принцип работы TFT LCD-мониторов (ликбез). Работа жидко-кристаллических элементов LCD-мониторов основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами. Общая блок-схема LCD-монитора показана на рис. 1. Панель любого LCD монитора представляет собой массив маленьких сегментов называемых пикселями, их количество соответствует произведению разрешения монитора по горизонтали и вертикали, и каждый пиксел в цветной панели состоит из трех субпикелов — красного, зеленого и синего. Управляя всеми пикселами панели, можно формировать изображение. В тонкопленочных полупроводниковых жидкокристаллических мониторах TFT LCD (Thin Film Transistor Liquid Crystal Display) жидкокристаллическое вещество расположено между двумя слоями стекла (рис. 2).

Характеристики TFT LCD дисплеев.

Статья добавлена: 02.03.2018 Категория: Статьи по мониторам

Характеристики TFT LCD дисплеев. Качество монитора (экрана) очень важно для сохранения зрения пользователей персональных компьютеров. Интенсивная работа в течении многих часов за монитором является очень сильной нагрузкой для зрения. Четкость изображения в большой степени зависит от размера точек люминофора экрана. Среднее расстояние между точками называется зерном. У различных мониторов этот параметр имеет значение от 0,21 до 0,31. Важными параметрами являются частота кадровой (вертикальной) развертки и строчной (горизонтальной) развертки и полоса пропускания видеосигнала. Чем выше частота кадров, тем устойчивее изображение и меньше утомление зрения (у качественных мониторов частота кадров 70-80 Гц). Частота строк в килогерцах определяется путем умножения количества строк, выводимых в одном кадре, на частоту кадровой развертки. Полоса частот пропускания видеосигнала (измеряемая в Мгц) определяется как произведение количества точек в строке и частоты строчной развертки. Ниже рассмотрены основные характеристики TFT LCD дисплеев:

Прогрели, пропаяли, заработало! А что дальше?

Статья добавлена: 28.02.2018 Категория: Статьи по мониторам

Прогрели, пропаяли, заработало! А что дальше? Часто, в разговорах со специалистами по ремонту, можно услышать: «пропаял контакты микросхем, разъемов неисправной платы и она заработала, неисправность исчезла». Обычно такое «волшебство» пропайки (или прогрева) объясняют плохим качеством паяного соединения, но есть и более реальное объяснение. Широко применяемые ранее оловянно-свинцовые припои, состоящие из свинца и олова в приблизительной пропорции 40% свинца и 60% олова, обладают хорошей эвтектикой, но несмотря на это мы уже сталкиваемся с необходимостью паять безсвинцовыми сплавами. Евросоюз принял директиву 2002/95/ЕС RoHS (Restriction of Hazardous Substances – запрет вредных веществ). Согласно этому документу, уже с 2006 года начали действовать ограничения на использование в промышленной электронной продукции и в новой электронной технике некоторых химических материалов, опасных для здоровья и окружающей среды. Среди прочих, действие директивы распространяется и на соединения свинца. Таким образом, запрещается использование свинцовосодержащих припоев. Но олово без укрощающего его свинца ведет себя непредсказуемо. Оловянное покрытие без добавок, как и кадмий и цинк, спонтанно образует кристаллы металла диаметром около 1-5 мкм и менее одной десятой толщины человеческого волоса, которые проталкиваются от основания вверх. Если они растут достаточно близко для того, чтобы прикоснуться к другому токопроводящему объекту, то вызовут короткое замыкание, которое может повредить аппаратуру. Таким образом, при работе с безсвинцовыми припоями возникает целый ряд проблем, которые связаны с физическими их свойствами.

Базовые понятия по трехмерной графике (ликбез).

Статья добавлена: 21.02.2018 Категория: Статьи по мониторам

Базовые понятия по трехмерной графике (ликбез). Графический конвейер. Графический конвейер (Graphic Pipeline) — это некоторое программно-аппаратное средство, которое преобразует описание объектов в «мире» приложения в матрицу ячеек видеопамяти растрового дисплея. Его задача — создать иллюзию трехмерного изображения. В глобальных координатах приложение создает объекты, состоящие из трехмерных примитивов. В этом же пространстве располагаются источники освещения, а также определяется точка зрения и направление взгляда наблюдателя. Естественно, что наблюдателю видна только часть объектов: любое тело имеет как видимую (обращенную к наблюдателю), так и невидимую (обратную) сторону. Кроме того, тела могут перекрывать друг друга, полностью или частично. 1. Первая стадия графического конвейера - трансформация (Transformation). Взаимное расположение объектов относительно друг друга и их видимость зафиксированным наблюдателем обрабатывается на первой стадии графического конвейера, называемой трансформацией (Transformation). На этой стадии выполняются вращения, перемещения и масштабирование объектов, а затем и преобразование из глобального пространства в пространство наблюдения (world-to-viewspace transform), а из него и преобразование в «окно» наблюдения (viewspace-to-window transform), включая и проецирование с учетом перспективы. Попутно с преобразованием из глобального пространства в пространство наблюдения (до него или после) выполняется удаление невидимых поверхностей, что значительно сокращает объем информации, участвующей в дальнейшей обработке. 2. Вторая стадия графического конвейера - освещенность (Lighting). На следующей стадии конвейера (Lighting) определяется освещенность (и цвет) каждой точки проекции объектов, обусловленной установленными источниками освещения и свойствами поверхностей объектов. (T&L от англ. Transformation and Lighting - Трансформация и Освещение). 3. Третья стадия графического конвейера - растеризации (Rasterization). На стадии растеризации (Rasterization) формируется растровый образ в видеопамяти. На этой стадии на изображения поверхностей наносятся текстуры и выполняется интерполяция интенсивности цвета точек, улучшающая восприятие сформированного изображения. Весь процесс создания растрового изображения трехмерных объектов называется рендерингом (rendering). Движение.

Варианты OLED - Organic Light Emitting Diode (органический светодиод).

Статья добавлена: 20.02.2018 Категория: Статьи по мониторам

Варианты OLED - Organic Light Emitting Diode (органический светодиод). Существует несколько различных по возможностям и сферах применения типов OLED: - Passive-matrix OLED (OLED с пассивной матрицей); - Active-matrix OLED (OLED с активной матрицей); - Transparent OLED (прозрачный OLED); - Top-emitting OLED (OLED с непрозрачным субстратом); - Foldable OLED (гибкий OLED); - White OLED (белый OLED). Passive-matrix OLED (PMOLED). OLED с пассивной матрицей состоит из многочисленных полосок-катодов, органических слоев и полосок-анодов. Место пересечения катодов и анодов - испускающие свет пиксели. В зависимости от того, какой пиксель нужно "включить", на ту или иную пару катод/анод подается напряжение. PMOLED несложен в производстве, однако он потребляет больше энергии, чем другие типы OLED. Лучше всего такой вариант подходит для дисплеев небольшого размера (2-3``) - в мобильных телефонах, КПК и MP3-плеерах. Впрочем, даже PMOLED потребляют меньше энергии, чем LCD сопоставимого размера. Active-matrix OLED (AMOLED). OLED с активной матрицей использует лишь одну пару катод/анод (в этом случае применяются не полоски, а настоящие панели). Кроме того, анод имеет подложку из тонкопленочных TFT-транзисторов, которая и «указывает», к какой области слоя подается электрический ток. AMOLED потребляет меньше энергии и, поэтому, может использоваться в дисплеях большего размера. В случае с видео - дисплеи с активной матрицей имеют лучшее время отклика. AMOLED можно применять в мониторах, телевизорах и рекламных биллбордах. Transparent OLED. Прозрачный OLED, в полном соответствии с названием, состоит только из прозрачных компонентов. Когда ток к нему не подается, дисплей практически прозрачен. Включенный дисплей испускает свет в обоих направлениях. Используя такую технологию можно создавать прозрачные "стекла", "окна", данные в которых выводятся непосредственно на поверхность. Как пример - в военной и гражданской авиации, сверхсовременных автомобилях и т. п. Для прозрачных OLED подходит как активная, так и пассивная матрицы. Top-emitting OLED. Дисплеи такого типа имеют непрозрачный или даже зеркальный субстрат-основу. Оптимальный для них вариант - активная матрица. Производители могут использовать дисплеи, например, в некоторых современных смарт-картах. Foldable OLED – это дисплеи нового поколения. В качестве субстрата используются полоски очень гибкой фольги или пластика. Благодаря этому, дисплеи очень легкие и легко меняют форму. Использование в мобильных телефонах и КПК может исключить поломки дисплея (например, при падении), теоретически гибкие дисплеи можно интегрировать с тканью, создавая «умную» одежду с OLED-элементами. White OLED. Белые OLED-панели испускают свет более яркий, комфортный для глаз, чем флуоресцентные лампы. При этом, такие элементы не имеют матриц - ни активной, ни пассивной, т. к. необходимости в создании пикселей нет. С добавлением светофильтров можно создать лампу любого цвета. При этом, OLED-лампы очень экономичны. Поскольку OLED-элементы можно делать больших размеров, в перспективе они способны заменить в домах и офисах лампы других типов. Основные преимущества и недостатки технологии OLED.

Дисплеи планшетов (ликбез).

Статья добавлена: 19.02.2018 Категория: Статьи по мониторам

Дисплеи планшетов (ликбез). С чем мы сталкиваемся в первую очередь в описании планшета или когда планшет попадает к нам в руки - это его экран или дисплей. В описании экрана планшетов присутствуют следующие параметры: - размер экрана; - разрешение; - тип матрицы: AMOLED, IPS, и пр.; - углы обзора; - защитное покрытие.

AMOLED. Управление OLED c активной матрицей.

Статья добавлена: 01.02.2018 Категория: Статьи по мониторам

AMOLED. Управление OLED c активной матрицей. Одним из важных элементов схемы управления матрицей AMOLED являются ключевые элементы, коммутирующие ток через OLED-светодиод. Они должны обеспечивать достаточное быстродействие, пропускать большие токи (несколько мА), иметь малые токи уточки, а технология их формирования должна обеспечивать высокую однородность параметров по всей площади экрана (см. рис. 1). Технология их формирования должна быть простой, недорогой и обеспечивать стабильную воспроизводимость параметров транзисторов. В настоящее время используются транзисторные ключи на аморфном кремнии a-Si и на поликремнии p-Si. Поликремниевый слой получают методом лазерного отжига пленки аморфного кремния. Пока этот процесс довольно сложен, трудоемок и недешев. Технология формирования матрицы транзисторов на аморфном кремнии в настоящее время хорошо отлажена и обеспечивает стабильные и однородные по площади параметры транзисторов. Поликремний обеспечивает лучшие токовые передаточные характеристики, чем аморфный кремний, однако в процессе производства очень трудно обеспечить высокую однородность характеристик, что приводит к заметной разнояркостности элементов и зон экрана. Для решения этой проблемы были опробованы различные альтернативные решения.

Стр. 1 из 20      1 2 3 4>> 20

Лицензия