Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по мониторам

Стр. 18 из 31      1<< 15 16 17 18 19 20 21>> 31

Видеодрайвер и BIOS видеокарты.

Статья добавлена: 27.01.2017 Категория: Статьи по мониторам

Видеодрайвер и BIOS видеокарты. BIOS видеокарты. Видеокарты имеют свою BIOS, которая подобна системной BIOS, но полностью независима от нее (другие устройства в компьютере тоже могут также иметь собственную BIOS.) Если вы включите монитор первым и немедленно посмотрите на экран, то сможете увидеть опознавательный знак BIOS видеоадаптера в самом начале загрузки системы. BIOS видеокарты, подобно системной BIOS, хранится в микросхеме ROM; она содержит основные команды (программы), которые предоставляют интерфейс между оборудованием видеоадаптера и программным обеспечением, информацию о видеоадаптере, экранные шрифты и т. д. Программа, которая обращается к функциям BIOS видеокарты, может быть автономным приложением, операционной системой или системной BIOS. Обращение к функциям BIOS позволяет вывести информацию о мониторе во время выполнения процедуры POST и начать загрузку системы до начала загрузки с диска любых других программных драйверов. BIOS видеокарты, как и системную BIOS, можно модернизировать двумя способами. Если BIOS записана в микросхеме EEPROM, то ее содержимое можно модифицировать с помощью специальной программы, поставляемой изготовителем адаптера. В противном случае микросхему можно заменить новой, опять-таки поставляемой изготовителем. BIOS, которую можно модифицировать с помощью программного обеспечения, иногда называется flash BIOS. Обновление BIOS видеокарты может потребоваться в том случае, если старый адаптер используется в новой операционной системе или изготовитель обнаруживает существенный дефект в первоначальном коде программы. Модернизировать BIOS видеоадаптера только потому, что появилась новая, пересмотренная версия конечно не следует (не модернизируйте, если в этом нет необходимости). Видеодрайвер. Программный драйвер является одним из важнейших элементов видеосистемы, с помощью которого осуществляется связь программного обеспечения с видеокартой. Видеокарта может быть оснащена самым быстрым процессором и наиболее эффективной памятью, но плохой драйвер способен свести на нет все эти преимущества.

Акустические сенсорные экраны.

Статья добавлена: 26.01.2017 Категория: Статьи по мониторам

Акустические сенсорные экраны. В основу сенсорных экранов IntelliTouch (рис. 1) положена оригинальная технология, использующая принцип поверхностно-акустических волн (ПАВ). Экран представляет собой стеклянную панель, что позволяет получить максимально качественное изображение на сенсорном мониторе. Поверхность экранов IntelliTouch способна противостоять механическим повреждениям. Прикоснувшись к экрану пальцем, рукой в перчатке или стило и Вы получите точный ответ на прикосновение. Сенсорные экраны Intelli-Touch прекрасно себя зарекомендовали в торговле, сфере обучения и других интеллектуальных сферах применения. Такого типа экраны построены с использованием миниатюрных пьезоэлектрических излучателей звука, не слышимого человеком. Стекло такого экрана постоянно незаметно вибрирует под воздействием излучателей, установленных в трех углах экрана. Специальные отражатели особым образом распространяют акустическую волну по всей поверхности экрана. Прикосновение к экрану меняет картину распространения акустических колебаний, что и регистрируется датчиками. По изменению характера колебаний можно вычислить координаты возмущений, внесенных нажатием на экран. Кроме этого, анализируя степень изменения колебаний, можно вычислить силу нажатия на экран. Это полезно при проектировании систем управления промышленным оборудованием, например, для плавного изменения скорости вращения двигателей и других параметров.

Резистивный сенсорный экран.

Статья добавлена: 23.01.2017 Категория: Статьи по мониторам

Резистивный сенсорный экран. Резистивные экраны (технология Accu-Touch) разрабатывалась для использования в условиях агрессивной окружающей среды, поэтому они превосходят другие экраны в надежности и долговечности. Резистивные экраны обладают максимальной стойкостью к загрязнению. Эта особенность позволяет им не бояться попадания на рабочую поверхность жидкостей, конденсата, паров, и надежно работать, когда другие типы экранов выходят из строя (экран выдерживает до 35 миллионов прикосновений к одной точке). Резистивные сенсорные экраны AccuTouch превосходно зарекомендовали себя в сфере обслуживания, в составе POS-терминалов, промышленности, медицине и транспорте. Если Вы прикоснитесь к экрану пальцем, рукой в перчатке, ногтем или кредитной картой, то Вы получите точную реакцию в ответ на прикосновение. Конструктивно экран представляет собой стеклянную или акриловую пластину, покрытую двумя токопроводящими слоями. Эти слои разделены незаметными для глаз прокладками, которые предохраняют сеть вертикальных и горизонтальных проводников от соприкосновения. В момент нажатия слои контактируют и контроллер регистрирует электрический сигнал. Координаты нажатия определяются, исходя из того, на пересечении каких проводников было зарегистрировано воздействие. Изготовленные по 4-проводной технологии экраны (рис.1) могут иметь диагональ 12-20 дюймов и разрешение 1024х1024 пикселей. Время реакции не превышает 10 мс, а для срабатывания нужно приложить усилие всего в 50-120 г/см2 (погрешность определения координат может достигать 3 миллиметров). К недостаткам технологии можно отнести снижение на 75-80% мощности светового потока, излучаемого монитором. Но это компенсируется простотой устройства, низкой ценой и малой восприимчивостью к вредным внешним воздействиям. Четырехпроводные резистивные экраны нашли себе место в таких устройствах, как КПК, устройства для чтения электронных книг и планшетные компьютеры: там, где важнее снизить стоимость устройства и обеспечить легкость восприятия информации.

Что такое технология DPST и Dual-FrequencyGraphics?

Статья добавлена: 20.01.2017 Категория: Статьи по мониторам

Что такое технология DPST и Dual-FrequencyGraphics? Источники питания узла задней подсветки LCD-панелей обеспечивают искусственное освещение, которое называется задней засветкой и требует отдельного источника питания. Практически все основные схемы узла задней засветки требуют для питания источника света достаточно высокого напряжения, но в то же время потребляют мало тока. Панели со светодиодной подсветкой потребляют существенно больше электрической энергии и излучают больше тепла. Среди приоритетов современной индустрии экономия энергии занимает одно из первых мест. Естественно, что и производители дисплеев переходят на более эффективную и экономичную подсветку и разрабатывают новые технологии управления яркостью. Наибольшее распространение получила в настоящее время технология Intel Display Power Saving Technology (DPST) от Intel. С помощью ее можно добиться до 25% экономии энергопотребления ЖК-панели за счет снижения частоты графического ядра при работе ноутбука от батарей.

Конвейерный метод управления подсветкой последовательной цветовой модуляции.

Статья добавлена: 19.01.2017 Категория: Статьи по мониторам

Конвейерный метод управления подсветкой. Разработчики решили увеличить полезное время модуляции за счет совмещения прохождения фаз по времени. Для этого экран разбили на секторы (сектор - это несколько строк) и сделали источник подсвета по секторам экрана с возможностью раздельного включения и выключения секторов-линеек. Теперь можно, не дожидаясь, пока закончится полная загрузка кадра, производить посекторное включение той части экрана, для которой процесс релаксации ЖК-ячеек уже завершился. Таким образом создается "волна" подсвета, бегущая следом за загрузкой (разверткой) данных изображения по кадру (на рис. 6 показана структура этого варианта динамической светодиодной подсветки LCD-дисплея).

Стандарты безопасности мониторов.

Статья добавлена: 18.01.2017 Категория: Статьи по мониторам

Стандарты безопасности мониторов. Обсуждение вопросов безопасности при работе с мониторами ведется постоянно, с первых дней их использования, но до сих пор проблемы здесь имеются. Но все ли они связаны с самим устройством монитора? Или опасность для человека исходит от неправильной организации рабочего места? Рассмотрим, какие требования к характеристикам мониторов определяются стандартами безопасности. Известно, что репутацию просто так не купишь, и все ведущие производители мониторов строго следят за качеством своей продукции. Часто монитор снабжен специальным сертификатом. Но его отсутствие у монитора от известного производителя вряд ли можно назвать серьёзным минусом, поскольку практически все компании-производители обеспечивают поддержку тех или иных стандартов, включая те, которые имеют непосредственное отношение к самой безопасности, так и к смежным областям. Поскольку в спецификациях на мониторы они встречаются достаточно часто, то просто перечислим их все с краткими описаниями.

Видеопамять GDDR4, GDDR5, HMC, HBM.

Статья добавлена: 17.01.2017 Категория: Статьи по мониторам

Видеопамять GDDR4, GDDR5, HMC, HBM. Видеопамять GDDR4 используется на частотах от 1 ГГц DDR (2 ГГц) и вплоть до 2,2-2,4 ГГц DDR (4-4,8 ГГц), что обеспечивает достаточно высокую пропускную способность, особенно в секторе графических решений. GDDR4 была ориентирована на рынок графических решений, ожидалось, что GDDR4 будет обладать гораздо большим энергопотреблением. Технология предоставляла непревзойденную мультимедийную поддержку для программных средств, которые могли помочь индивидуальным творцам реализовать плоды своего воображения. Технология GDDR4 позволяет осуществлять визуализацию цифровых материалов с кинематографическим качеством и создавать высокореалистичные игры, а также поддерживает мощные и эффективные инструментальные средства для творчества и повышения продуктивности работы. Память стандарта GDDR-5 – это видеопамять с увеличенной в два раза пропускной способностью, с новыми технологиями энергосбережения, а также алгоритмом выявления ошибок (память типа GDDR-5 в три раза быстрее микросхем GDDR-3, работающих на частоте 1600 МГц DDR). Память типа GDDR-5 использует две тактовых частоты для разных операций, что позволяет свести к минимуму задержки на операциях записи и чтения. Чипы памяти имеют плотность 512 Мбит, они способны передавать до 24 гигабайт данных в секунду, и работать на частотах свыше 3.0 ГГц DDR при напряжении 1.5 В (компания Qimonda - поставщик GDDR-5 для видеокарт AMD). Разговоры о возможности использования производителями видеокарт памяти типа GDDR-5 ходили уже давно, но практическая реализация этой идеи началась только летом 2008 года - видеокарты Radeon HD 4870 уже оснащались 1 Гб памяти типа GDDR-5. Компания Qimonda тогда объявила, что стала партнёром AMD по выпуску графических решений с памятью типа GDDR-5. Массовые поставки соответствующих микросхем начались всего через полгода после появления первых образцов. Таким образом, первые видеокарты Radeon HD 4870 были оснащены памятью типа GDDR-5 производства Qimonda. Вслед за настольным сектором память типа GDDR-5 прописалась и в ноутбуках, а затем и в игровых консолях. Для компании AMD поставлялись микросхемы плотностью 512 Мбит, способные работать на скорости 4.0 ГГц DDR, а память видеокарт Radeon HD 4870 работала на частоте 3870 МГц DDR. Идут поставки микросхем GDDR-5, способных работать и на частоте 5.0 ГГц DDR и 6.0 ГГц DDR. Основам ныне применяемых стандартов DRAM уже не один десяток лет, и их улучшение позволило повысить пропускную способность, но далеко не настолько, насколько выросла производительность CPU и GPU за это время. Особенно это касается графических процессоров, и индустрии требуются новые типы памяти, которые дадут совершенно иные возможности, вроде Wide I/O, HMC и HBM. Все эти стандарты основываются на так называемой stacked DRAM — размещении чипов памяти слоями, с одновременным доступом к разным микросхемам, что расширяет шину памяти, значительно повышая пропускную способность и немного снижая задержки. Стандарт Hybrid Memory Cube, предлагаемый Intel и Micron, можно назвать наиболее универсальным, он должен позволить получить пропускную способность памяти (ПСП) до 480 ГБ/с при несколько бо?льших энергопотреблении и себестоимости по сравнению с Wide I/O 2. Стандарт HMC не является стандартом JEDEC, но в консорциум входят такие крупные компании, как Samsung, Micron, Microsoft, Altera, ARM, Intel, HP, Xilinx, SK Hynix и другие, так что поддержка со стороны индустрии у стандарта достаточная. Однако среди поддерживающих HMC нет компаний AMD и Nvidia, выпускающих графические процессоры — они выбрали для себя конкурирующий (условно) стандарт компании Hynix — High Bandwidth Memory (HBM). Стандарт HBM не настолько универсальный, как HMC, это специализированная версия Wide I/O 2, которая лучше всего подходит именно для графических процессоров, хотя может применяться и в будущих гибридных процессорах APU компании AMD, например. Хотя компании AMD и Nvidia уже анонсировали применение HBM в будущих поколениях GPU, Nvidia ожидала выхода своего Pascal с поддержкой этой памяти лишь в конце 2016-м, тогда как AMD планировал выпуск первого графического процессора, оснащенного HBM-памятью, уже в середине года. Еще в 2011 году компании AMD и Hynix анонсировали совместные планы по разработке и внедрению нового стандарта памяти — High Bandwidth Memory (HBM). Новый тип памяти должен был стать огромным шагом вперед по сравнению с применяющейся до сих пор GDDR-памятью, и среди главных преимуществ HBM значились серьезное увеличение пропускной способности и увеличение энергетической эффективности (снижение потребления вместе с ростом производительности). В стандарте HBM и аналогичных ему, вместо массива очень быстрых чипов памяти (7 ГГц и выше), соединенных с графическим процессором по сравнительно узкой шине от 128 до 512 бит, применяются очень медленные чипы памяти (порядка 1 ГГц эффективной частоты), но ширина шины памяти при этом получается шире в несколько раз.

Основные понятия трехмерной компьютерной графики (ликбез).

Статья добавлена: 28.12.2016 Категория: Статьи по мониторам

Основные понятия трехмерной компьютерной графики (ликбез). Трехмерную сцену можно представить как набор отдельных групп элементов: группы трехмерных объектов, группы источников освещения, группы применяемых текстурных карт, группы (или одной) камер. Трехмерный объект обладает свойствами координат его вершин в пространстве сцены; локальных координат в пространстве текстурной карты; алгоритмом поведения - масштабирование, угол поворота, смещение и прочие изменения в течение времени в соответствии с замыслом разработчиков. Производным от первых двух свойств является грань - плоскость объекта, имеющая три вершины, с наложенными на нее текстурами. Источник освещения может обладать всеми или частью из следующего набора свойств: координатами в пространстве сцены, ориентацией (направленностью), типом (фоновым, точечным и т. п.), цветом и алгоритмом изменения светового излучения. Камера представляет собой точку, откуда наблюдатель обозревает трехмерную сцену. Плоскость, в которой расположена камера, называется плоскостью проецирования, или картинной плоскостью. Камера обладает свойствами координат в пространстве сцены, целевой точкой, углом зрения, углом поворота. Линия, соединяющая камеру и целевую точку, называется линией визирования. Угол поворота рассчитывается относительно оси линии визирования. Текстурой (или текстурной картой) называют двух- или трехмерное изображение, имитирующее зрительное восприятие человеком свойств различных поверхностей. Специализированные текстуры (например, карты окружающей среды) сами не отображаются, а используются для генерации комбинированных текстур, накладываемых на полигон. Большинство массовых приложений трех¬мерной графики, в том числе игр, при построении объемных сцен следуют устоявшейся технологии, которую можно разбить на относительно обособленные этапы. Описываемая ниже общепринятая последовательность не является жестко заданной. При конкретной реализации на программном и аппаратном уровнях могут появляться существенные отличия, однако смысловое содержание блоков практически не меняется.

Методы текстурирования.

Статья добавлена: 27.12.2016 Категория: Статьи по мониторам

Методы текстурирования. Билинейная фильтрация (bi-linear filtering) - метод текстурирования, при котором выполняется интерполяция текстуры. Улучшение качества изображения небольших текстур, помещенных на большие многоугольники (достигается так называемая “размазанность текстур”). Эта технология устраняет эффект "блочности" текстур. Трилинейная фильтрация (frii-linear filtering) - более сложный метод текстурирования, при котором кроме интерполяции текстуры выполняется интерполяция между уровнями детализации текстуры. Это метод реализуется комбинацией билинейной фильтрации и так называемого наложения mip mapping (текстуры, имеющие разную степень детализации в зависимости от расстояния до точки наблюдения, причем при отображении удаляющихся объектов уменьшается насыщенность, яркость цветов текстуры, степень ее детализации и увеличивается скорость ее обработки.). При трилинейной фильтрации берутся две соседние текстуры, одна из которых содержит текселы, попадающие в проекцию, а другая является ближайшей к ней по удаленности, и к каждой применяют билинейную фильтрацию. В итоге аппроксимация проводится уже по восьми текселам и результат выглядит ближе к реальности, так как текстуры заранее обсчитаны для определенных расстояний. Однако и к пропускной способности памяти требования в восемь раз выше, чем при поточечной фильтрации. Важной операцией в визуализации трехмерных объектов является рисование многоугольника, так обычно представляются движущиеся объекты. Текстуры на многоугольниках придают объекту более реалистичный вид, сохраняя преимущества быстрого рисования трехмерных изображений. Рисование многоугольника напоминает процесс наложения текстурных карт на каркасные структуры, хотя и требует большей производительности. Сетка, покрывающая поверхность в трехмерном пространстве, в большинстве случаев составлена из треугольников, что снижает сложность программного (или аппаратного) обеспечения для вывода объекта на экран. Изменяя размер треугольников, можно управлять степенью детализации объектов. Использование трилинейной фильтрации значительно замедляет работу 3D-ускорителей, но формирует более качественное изображение, чем обычная билинейная с мипмэппингом. Анизотропная фильтрация, используемая в некоторых видеоадаптерах, позволяет сделать сцену еще более реалистичной.

Использование микросхемы МР1517 (повышающий DC/DC-преобразователь, и преобразователь типа SEPIC).

Статья добавлена: 26.12.2016 Категория: Статьи по мониторам

Использование микросхемы МР1517 (повышающий DC/DC-преобразователь, и преобразователь типа SEPIC). Яркость модулей светодиодной подсветки не уступает яркости люминесцентных ламп с холодным катодом, долговечность светодиодов значительно выше, обеспечивается более широкая цветовая гамма и насыщенность цвета LCD-монитора за счет более эффективного согласования спектральных характеристик цветных фильтров и спектров излучения цветных светодиодов, а также благодаря уникальной конструкции модуля подсветки.

Микросхемы-драйверы (схемы управления светодиодными системами видеосистем).

Статья добавлена: 22.12.2016 Категория: Статьи по мониторам

Микросхемы-драйверы (схемы управления светодиодными системами видеосистем). Современные микросхемы-драйверы светодиодов являются результатом эволюции двух разных по назначению групп электронных компонентов. Первая группа - была ориентированна на построение схем динамического или статического управления индикацией, т.е. это параллельные или сдвиговые регистры, дополненные транзисторными ключами и балластными резисторами. Вторая группа - использовалась для повышения качества отображения (ключи и балластные резисторы заменили на регулируемые источники тока). Так появились первые драйверы светодиодов для применения в различного рода информационных дисплеях. Сегодня едва ли можно найти электронное устройство, в котором не использовались бы светоизлучающие диоды. Эти приборы нашли широкое применение в различных устройствах: от карманного фонарика до OLED-дисплеев, которые, по прогнозам экспертов, в скором времени придут на смену ЖК- и плазменным панелям. Все шире используются светодиоды и в системах уличного и домашнего освещения. Это объясняется рядом достоинств, присущих светодиодам, среди которых: высокий КПД, высокая удельная яркость и относительно низкая стоимость. Cветодиод - это прибор, очень чувствительный к качеству питающего напряжения. Чтобы максимально использовать все возможности светодиодов, необходимо грамотно организовать систему питания (иначе возможно значительное сокращение срока службы прибора или даже выход его из строя). Широкое внедрение энергосберегающих технологий требует обеспечение высокого КПД схемы питания, поэтому создание оптимальной системы питания светодиодов – это сложная схемотехническая задача. В мобильных устройствах с питанием от батареи (таких как ноутбуки, КПК, мобильные телефоны, фотоаппараты, MP3-плееры), эта проблема стоит особенно остро из-за ограниченного времени работы питающего элемента. В данном классе устройств дополнительными ограничениями являются их компактные размеры и отсутствие активного охлаждения. С появлением широкого ассортимента сверх-ярких светодиодов различного спектра свечения и по мере появления новых областей их применения (например, подсветка ЖК-дисплеев, иллюминация, архитектурная подсветка, светофоры и т.д.) потребовалась доработка преобразователей напряжения в части стабилизации не напряжения, а тока, и раздельного или совместного управления несколькими группами светодиодов. Таким образом, в современном понимании драйвер светодиода - достаточно высоко интегрированное решение, которое, в зависимости от области применения, может состоять из следующих функциональных блоков: - DC/DC-преобразователь; - регулируемые или программируемые линейные источники тока (на один или несколько каналов); - ШИМ-контроллеры для индивидуального или общего модулированного управления током через сверхяркие светодиоды; - интерфейс управления; - блок диагностики для обнаружения обрывов в цепи подключения светодиодов, коротких замыканий и других отказов.

Работы по замене ламп подсветки ЖК-мониторов

Статья добавлена: 21.12.2016 Категория: Статьи по мониторам

Работы по замене ламп подсветки ЖК-мониторов. Замена лампы подсветки ЖК-монитора – достаточно простая операция, в некоторых мониторах предусмотренная “конструктивно”. Но в фирменном сервисе за ремонт ЖК-монитора запросили какие-то нереальные деньги – видимо, собрались менять матрицу. Пользователь ПК обратился с просьбой выполнить ремонт своего ЖК-монитора (экран не светится). В фирменных сервисах обычно такие неисправности устраняют путем замены ЖК-панели целиком (особенно в случае отказа ноутбучных панелей). Стоит это довольно дорого, поэтому он стал искать «варианты» и обратился в нашу организацию. Принципиальной схемы на данный монитор быстро найти не смогли, поэтому решили проверить работоспособность ряда доступных для диагностики и замены компонентов монитора (лампы подсветки LCD-панели, блок питания, инвертор, предохранитель на плате инвертора, напряжения цепи питания и др.). При проверке выяснили: напряжения и цепи питания соответствуют норме, в наличии сигнал включения, сам инвертор исправен, коротких замыканий в нагрузках и/или обмотках трансформаторов инверторов нет, высоковольтные конденсаторы исправны, цепи защиты инвертор «пассивны». Было высказано предположение, что неисправны сами лампы подсветки (CCFL – Cold Cathode Fluorescent Lamp - флуоресцентные лампы с холодным катодом), и это предположение оказалось реальностью. При выходе из строя ламп подсветки – экран дисплея или тусклый или полностью темный. Лампы могут «умереть» из-за механического повреждения, «сесть» от длительной интенсивной эксплуатации, а также просто выгореть из-за их работы в режиме повышенной яркости. ЖК-матрица и лампы подсветки выходят из строя иногда и вследствие механических повреждений. Бывает, что лампы тускнеют или выходит из строя одна из ламп подсветки. В этом случае изображение будет более темным, блеклым. Когда одна из ламп перестает светиться, яркость монитора значительно уменьшается, а подсветка становится неравномерной. Если отключаются все лампы, то экран становится темным (эту ситуацию мы и наблюдали, конечно погаснуть экран может как по вине самих ламп, так и из-за электрической схемы управления ими).

Стр. 18 из 31      1<< 15 16 17 18 19 20 21>> 31

Лицензия