Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по блокам питания

Стр. 18 из 28      1<< 15 16 17 18 19 20 21>> 28

Сглаживающие LC-фильтры: индуктивности (дроссели), и емкости.

Статья добавлена: 23.11.2016 Категория: Статьи по блокам питания

Сглаживающие LC-фильтры: индуктивности (дроссели), и емкости. Сглаживающий, или низкочастотный, фильтр представляет собой LC-фильтр, то есть индуктивность, включенную последовательно с нагрузкой, и емкость, включенную параллельно нагрузке (рис. 1). Дроссели. Если говорить об ограничениях фазы импульсного регулятора напряжения питания, то оно заключается и в том, что индуктивности (дроссели), и емкости тоже имеют ограничение по максимальном току, который через них можно пропускать. Например, дроссель PA2080.161NL компании PULSE налагает на фазу питания ограничение по току 40 A (рис. 2).

Системы бесперебойного питания с большим временем автономной работы.

Статья добавлена: 22.11.2016 Категория: Статьи по блокам питания

Системы бесперебойного питания с большим временем автономной работы. Для нормального функционирования многих компаний, продающих свои услуги в сфере связи и телекоммуникаций, и т.д., очень важен вопрос нормального и бесперебойного функционирования оборудования. В условиях жесткой конкуренции, любые сбои в работе оборудования могут привести не только к прямым потерям (выплата неустойки пользователям), но и падению имиджа компании. Выход из этой ситуации один - построение системы бесперебойного питания. Причиной неприятных ситуаций с энергоснабжением могут стать работы как проводимые энергоснабжающей организацией города, так и аварийные ситуации на подстанции, линии электропередач и т.п. Длительные отключения электропитания могут привести к тому, что не будет работать ни связь, ни телекоммуникации, ни охранные системы самого объекта. Реальный выход из этой ситуации – это построение системы бесперебойного питания. Практически все серьезные компании обеспечивают работу собственного оборудования в аварийных ситуациях с помощью источников бесперебойного питания (UPS или системы постоянного тока), и нередко, с помощью дизельной (бензиновой) электростанции. Важным вопросом при построении данной системы становится вопрос обеспечения длительного времени автономной работы объекта в условиях полного прекращения электроснабжение. Вариантов построения таких систем множество, и предложить типовое решение довольно сложно. Необходимо учитывать множество факторов. Место расположение компании, имеющееся энергетическое оборудование, мощность потребляемая оборудованием которое необходимо защитить, необходимое время автономной работы и т.д. При детальной проработке задачи, необходимо обязательно проанализировать несколько вариантов, с различным оборудованием и выбрать из них один наиболее подходящий. Одним из важнейших факторов, который должен рассматриваться при построении системы гарантированного бесперебойного электропитания это экономическая целесообразность построения данной системы. В данной статье рассмотрены основные проблемы, которые встают перед разработчиками таких систем.

Организация электропитания компьютерных систем.

Статья добавлена: 21.11.2016 Категория: Статьи по блокам питания

Организация электропитания компьютерных систем. Если на входе напряжение падает ниже допустимых пределов, следует обратиться в обслуживающую вас электрослужбу. В большинстве энергетических компаний имеются подразделения, которые тщательно рассмотрят эту проблему. Выясните, каковы предельные значения напряжения, которое вам будет поставляться. Если входное напряжение (в розетке) отклоняется от номинального - оказывается значительно ниже допустимого уровня либо заметно падает при подключении емких потребите¬лей энергии - это может означать неадекватность вашей проводной системы или то, что вы подключаете в один контур слишком много потребителей энергии. Чтобы исправить такое положение вещей, попросите своего электрика проверить монтажные схемы электропроводки, а также просуммируйте всю нагрузку на цепь, чтобы оценить, насколько она соответствует означенным параметрам. В случае перегрузки цепи можно перераспределить несколько потребителей энергии на другие контуры питания, модернизировать контур, заменив провода на провода большего сечения или добавить новый контур для части потребителей. Можно установить питающий контур, который снабжает энергией только компьютеры и никакое другое электрооборудование. Это потребует прокладки пары проводов и заземления электрического выхода от главной распределительной панели до компьютеров. При таком соединении вы избавлены от падения напряжения при включении других типов потребителей, поскольку их в этом контуре попросту нет. Обычно, чтобы защититься от бросков напряжения, используют проходной фильтр (импульсный подавитель - transient suppressor). «Активной составляющей» импульсного подавителя обычно служит металло-оксидный варистор, являющийся нелинейным резистором. Метало-оксидный варистор подсоединяется как шунт между фазой и нейтралью и обладает очень высоким сопротивлением, пока напряжение остается ниже некоторого порогового значения, например 280 В. Однако, если напряжение превышает это значение, то сопротивление варистора резко падает и он передает импульс на нейтраль. Еще один тип импульсных подавителей - это активный электронный контур, блокирующий цепь от воздействия импульсов.

TPS650830 - однокристальный Power Management IC для новейших процессоров Intel.

Статья добавлена: 18.11.2016 Категория: Статьи по блокам питания

TPS650830 - однокристальный Power Management IC для новейших процессоров Intel. Энергоэффективность повлияла на дизайн процессоров Skylake. В стремлении к экономии электроэнергии получили развитие как традиционные подходы, так и некоторые принципиально новые идеи. Теперь процессорный дизайн не включает в себя интегрированный преобразователь питания. Он был убран именно из соображений экономичности – в наиболее энергоэффективных CPU с тепловым пакетом порядка 4,5 Вт это решение оказалось слишком расточительным, поэтому теперь конвертер питания вновь поселился на материнских платах (в будущих микроархитектурах Intel собирается вернуть преобразователь обратно в процессор, но не во всех версиях дизайна, а только в тех, которые рассчитаны на достаточно либеральные тепловые пакеты). Чип TPS650830 является однокристальным PMIC (Power Management IC), разработанным специально для новейших процессоров Intel (см. рис. 1, 2).

Характеристики аккумуляторных батарей.

Статья добавлена: 17.11.2016 Категория: Статьи по блокам питания

Характеристики аккумуляторных батарей. У любой аккумуляторной батареи есть несколько характеризующих ее важных характеристик: 1. Внутреннее сопротивление. Внутреннее сопротивление измеряется в миллиомах (мОм). Чем меньше внутреннее сопротивление батареи, тем лучше ее нагрузочные характеристики. При работе с офисными приложениями ноутбук потребляет относительно небольшие токи, но во время интенсивной игры, использующей сложные преобразования 3D-графики потребляемый ток возрастает многократно. В «критических» случаях батареи с различной химией ведут себя неодинаково. Наименьшим внутренним сопротивлением обладают батареи на основе лития, а никель-металлогидридные имеют значительно большее сопротивление. Поэтому (при одинаковой емкости батарей), в случае высоких потребляемых токов (например, при интенсивной вычислительной нагрузке на процессор и видеоподсистему ноутбука) у никель-металлогидридных батарей напряжение упадет до критического уровня быстрее, чем у литиевых батарей. А многие обычные пользователи уверены, что раз емкость батарей с разной химией одинакова, то и время работы ноутбука от каждой из них будет сопоставимо, но это далеко не так. 2. Плотность энергии (Energy Density) заряженной батареи. Другая не менее важная характеристика аккумуляторных батарей это плотность энергии заряженной батареи, которая измеряется в Вт*час/килограмм массы батареи. Наибольшую плотность энергии имеют литий-полимерные батареи (150–200 Вт*час/кг), им немного уступают литий-ионные батареи (100–150 Вт*час/кг), а никель-металл-гидридные батареи едва обеспечивают плотность энергии 60–80 Вт*час/кг. Поэтому, наименьшими размерами и весом при одинаковой емкости обладают литий-полимерные и литий-ионные батареи, а никель-металлогидридные имеют несколько большие размеры. 3. Форм-фактор. Особенности принципов работы и конструкция литий-полимерных батарей позволяют придать реальной батарее практически любой форм-фактор, что, безусловно, важно для проектирования перспективных ноутбуков. 4. Минимальное время заряда батареи. Важным параметром является и величина минимального времени заряда батарей, которое составляет от 2 до 4 часов у всех рассматриваемых типов батарей. Эта величина, показывает затраты времени на зарядку батареи, а ведь при интенсивной эксплуатации аккумуляторы мобильных устройств приходится заряжать раз в два-три дня, а то и ежедневно. 5. Срок службы батареи. Это одна из важнейших характеристик, но которая для батарей с различной химией определяется по-разному. Для одних батарей критичным является число рабочих циклов «заряд-разряд», для других немаловажное значение имеет общее время их эксплуатации. Никель-металлогидридные батареи «держат» всего 600–800 циклов «заряд-разряд» и по этой причине срок их службы редко превышает два-три года даже при весьма аккуратном обслуживании.

Параметры высококачественных блоков питания ПК.

Статья добавлена: 28.08.2017 Категория: Статьи по блокам питания

Параметры высококачественных блоков питания ПК. Для оценки качества блоков питания ПК используются различные критерии. При замене блока питания компьютера (или покупке) необходимо обращать внимание на ряд важных для надежной работы системы параметров источника питания:

Особенности системы электропитания компьютеров соединенных в локальную сеть.

Статья добавлена: 28.08.2017 Категория: Статьи по блокам питания

Особенности системы электропитания компьютеров соединенных в локальную сеть. В большинстве случаев заземление на предприятиях сводится к подключению "земли" (то есть третьего провода розетки) к нейтрали в силовом щите. Но в организации, занимающей несколько этажей здания, и на каждом этаже есть отдельный щиток со своей землей. В результате токи, протекающие по нейтрали, создают разность потенциалов между "землями" этажей (щитков). Весь этот механизм представлен на рис.1. Если компьютеры организации соединены в локальную сеть, то это падение напряжение фактически оказывается приложенным между сетевыми платами компьютеров, расположенных на разных этажах. В результате происходят сбои при передаче информации, т. е. сеть начинает работать нестабильно без видимых причин, и, кроме того, это может приводить к выходу из строя сетевых карт.

Особенности подключения и использования нового ИБП.

Статья добавлена: 28.08.2017 Категория: Статьи по блокам питания

Особенности подключения и использования нового ИБП. Требования к помещению, в котором будет происходить монтаж ИБП. Помещение, в котором устанавливается источник бесперебойного питания, должно удовлетворять следующим требованиям: - температура окружающей среды должна быть в пределах 20-25°C; - влажность помещения не должна превышать 95%; - полы в помещении должны быть обработаны антистатиком, а еще лучше - иметь специальное покрытие, препятствующее накоплению электрического заряда; - перед монтажом ИБП необходимо провести влажную уборку помещения. ПРЕДУПРЕЖДЕНИЕ. Подключение ИБП (UPS) - ответственная процедура, целиком и полностью рассчитанная на профессионала, знакомого, как минимум, с правилами электробезопасности, правилами устройства электроустановок (ПУЭ), знающего, как выглядит схема подключения ИБП, и имеющего сертификаты, разрешающие осуществлять подключение определенных ИБП, производители которых снимают гарантию в случае, если они подключены несертифицированными инсталляторами. Данные требования со стороны компаний-производителей более чем оправданы, ибо как раз на момент подключения ИБП и пуско-наладочных работ и приходятся критические промахи, влекущие за собой некорректную работу электросистемы в будущем. ЗАМЕЧАНИЕ. Еще одной проблемой является гарантия. Некоторые поставщики UPS требуют, чтобы ИБП, имеющие мощность более 8 кВА (иногда границей является другое значение мощности) подключались только специалистами, сертифицированными производителем UPS, в противном случае, гарантия снимается. Аналогичное требование предъявляют поставщики трехфазных ИБП. Это помогает избежать неправильного подключения и дает возможность немного заработать сертифицированным специалистам. Прежде чем самостоятельно подключать UPS большой или средней мощности, узнайте, разрешает ли производитель или поставщик самостоятельное подключение и сохраняется ли гарантия в этом случае. Если ответы будут благоприятные, изучайте инструкцию и подключайте свой ИБП. Чтобы ИБП служил вам максимально долго и ваше вложение средств в ИБП оказалось наиболее эффективно, постарайтесь соблюдать следующие правила: 1. Внимательно изучите инструкцию, прилагаемую к UPS. 2. Если Вы принесли ИБП с холода, дайте ему согреться при комнатной температуре в течение трех-пяти часов. 3. Прежде, чем включать новый UPS, зарядите аккумуляторные батареи. Батареи нового ИБП не заряжены. Поэтому, если Вы сразу же поставите ИБП под нагрузку, батареи не смогут обеспечить должное поддержание питания. Более того, диагностическая процедура самотестирования, автоматически запускаемая при каждом включении ИБП, проверяет состояние батареи. Поскольку батарея, будучи незаряженной, справиться с нагрузкой не может, ИБП может сообщить, что батарея неисправна и требует замены. 4. Дайте батареям зарядиться. Оставьте ИБП подключенным к сети на 24 часа (если не указано иное время в техническом описании Вашего UPS). Это первая зарядка батарей, поэтому она требует больше времени, чем обычная штатная зарядка. Сам ИБП при этом может быть выключен. 5. Подключайте к ИБП только ту нагрузку, которая действительно требует бесперебойного питания. Применение ИБП оправдано лишь там, где потеря питания может привести к потере данных, - ПК, серверы, хабы/свитчи, маршрутизаторы, внешние модемы, стримеры, дисководы и т.п. Принтеры, сканеры, а тем более осветительные лампы, не нуждаются в UPS, более того, мощный лазерный принтер настолько увеличивает нагрузку на UPS, что в критический момент и самому компьютеру может не хватить питания. 6. Не перегружайте UPS. Выбирайте UPS, мощность которого больше (или, как минимум, равна) суммарной мощности нагрузки. При этом обязательно учтите разницу между ваттами и вольт-амперами! 7. Постарайтесь обеспечить заземление. Без должного заземления эффективность подавления помех будет снижена. 8. Соблюдайте правила эксплуатации: - UPS рассчитаны на работу в окружающих условиях, указанных в техническом описании. - Не переохлаждайте (ниже 0°С) и не перегревайте ИБП (выше 40°С). Не подвергайте ИБП воздействию ударов и влаги. ВНИМАНИЕ! UPS, даже отключенный от сети переменного тока, на зажимах аккумулятора имеет напряжение 220 В, опасное для жизни! Несколько полезных рекомендаций, которые нужно соблюдать при эксплуатации ИБП:

Элементная база регулируемых источников питания системных плат.

Статья добавлена: 28.08.2017 Категория: Статьи по блокам питания

Элементная база регулируемых источников питания системных плат (как это выглядит ?). Импульсный понижающий преобразователь напряжения питания содержит в своей основе PWM-контроллер (ШИМ-контроллер), электронный ключ, который управляется PWM-контроллером и периодически подключает и отключает нагрузку к линии входного напряжения, а также индуктивно-емкостной LC-фильтр для сглаживания пульсаций выходного напряжения. Принцип действия импульсного понижающего преобразователя напряжения достаточно прост. PWM-контроллер создает последовательность управляющих прямоугольных импульсов напряжения, которые характеризуются амплитудой, частотой и скважностью. Сигнал, формируемый PWM-контроллером, используется микросхемой MOSFET-драйвера для управления переключением двух MOSFET-транзисторов, выполняющих функцию электронного ключа. MOSFET-драйвер, подавая требуемый уровень напряжения на затворы MOSFET-транзисторов, переключает их с частотой PWM-сигнала, индуктивно-емкостной LC-фильтр сглаживает пульсаций выходного напряжения.

Эффективное средство для борьбы с импульсными и высокочастотными помехами - сетевой фильтр.

Статья добавлена: 28.08.2017 Категория: Статьи по блокам питания

Эффективное средство для борьбы с импульсными и высокочастотными помехами - сетевой фильтр. Сетевой фильтр - недорогое но достаточно эффективное средство для борьбы с импульсными и высокочастотными помехами. Многие сетевые фильтры-удлинители в реальности оказываются всего лишь удлинителями. Для начала проясним суть вопроса фильтрования, и для этого определим все помехи, с которыми должен справляться фильтр. Сразу оговоримся, что неприятные моменты типа пропадания энергии вообще, сильное понижение действующего напряжения и т.д. для фильтров не подвластны, так как здесь уже необходимо использовать ИБП. А непосредственно фильтр в первую очередь должен надёжно защищать от импульсных помех. Дело в том, что в сетях электропитания периодически возникают кратковременные всплески напряжения амплитудой в десятки киловольт. Природа их может быть естественной, например, удары молнии, или техногенной, к примеру, неполадки на подстанциях. Однако нам не важно откуда берутся эти импульсы, важно то, что для аппаратуры они губительны. Длительность их очень мала – микросекунды и менее, поэтому для обычной бытовой техники они не опасны вовсе. Но для высокотехнологичных устройств (в том числе и для ПК) они не желательны, поскольку такой всплеск может неблагоприятно подействовать на источник питания, а стабильность выходного напряжения – важнейший фактор.

Мощность блоков питания.

Статья добавлена: 28.08.2017 Категория: Статьи по блокам питания

Мощность блоков питания. Большинство производителей компьютеров предоставляют техническую информацию о блоках питания. Ее можно найти в техническом руководстве, а также на этикетке, приклеенной к блоку. Если вы знаете название компании — производителя блока питания, обратитесь непосредственно к ней. Входные параметры измеряются в вольтах, а в качестве выходных приводятся токи нагрузки (в амперах) для разных номиналов выходного напряжения источника (в вольтах). IBM обычно приводит в качестве выходного параметра мощность в ваттах. Если в документации к конкретному блоку указаны только токи нагрузки в амперах, преобразуйте их в выходную мощность в ваттах, используя простую формулу: мощность (Вт) = напряжение (В) ? ток (А). Перемножив напряжения и токи по каждой выходной цепи и просуммировав результаты, можно получить общую (вычисленную) выходную мощность блока питания. Обратите внимание, что выходная мощность подсчитывается только на основе положительных сигналов напряжения; отрицательные выходная мощность, сигналы Power_Good и другие не учитываются. В табл. 1 приведены стандартные значения выходных параметров (мощности, напряжения и тока нагрузки) для систем различных конструкций. Большинство производителей выпускают серии устройств с различными выходными мощностями в диапазоне 100–450 Вт. В табл. 2 приведены номинальные мощности по каждой цепи для блоков питания различной суммарной мощности, указанной производителем. В большинстве случаев вычисленная мощность практически совпадает с указанной в паспорте, но бывают и существенные расхождения. При составлении таблицы использовались каталоги компаний Astec Standard Power и PC Power and Cooling.

Технологии системных плат ASUS

Статья добавлена: 28.08.2017 Категория: Статьи по блокам питания

Технологии системных плат ASUS В активе ASUS наиболее широкий и разнообразный ассортимент материнских плат для новой платформы Intel. Например, модель P8P67 (рис. 1) принадлежит к линейке среднего уровня и имеет достаточно интересное оснащение. Контроллер DIGI+ VRM позволяет эффективнее управлять подсистемой питания, в зависимости от нагрузки активизируя необходимое количество фаз. Связка специализированных процессоров TPU + EPU, а также набор функциональных утилит поможет найти баланс между энергопотреблением и производительностью системы. Плата оказалась наиболее экономичной, энергопотребление в режиме покоя на 5–7 Вт меньше, чем у конкурирующих решений. Оболочка EFI от ASUS оставляет приятное впечатление – аккуратное графическое решение, приглушенные цветовые тона, логичная структура меню. Здесь работает скроллирование на мышке, потому перемещаться по разнообразным меню очень удобно. Однако без клавиатуры все же не обойтись. Для изменения части параметров необходимо либо явным образом набирать значение на числовом блоке или листать клавишами «+/-» до нужного показателя Выпадающих списков, увы, нет. Однако отметим, что плата предоставляет доступ к очень широкому набору опций, которые можно регулировать в процессе тонкой подстройки системы. Итак, основные новые технологии системных плат от ASUS: - стабилизатор напряжения DIGI+ ; - TPU – разгонный процессор от ASUS; - энергетический процессор; - EFI BIOS (EZ Mode); - полноценная поддержка USB 3.0.

Стр. 18 из 28      1<< 15 16 17 18 19 20 21>> 28

Лицензия