Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 1 из 120      1 2 3 4>> 120

Особенности блоков питания принтеров.

Статья добавлена: 15.12.2017 Категория: Статьи

Особенности блоков питания принтеров. Источник питания принтера Canon LBP-1120 имеет классический вариант построения с применением в качестве управляющей микросхемы специального ШИМ-контроллера. Стоит отметить, что источники на базе этой микросхемы очень часто встречаются и в других лазерных принтерах и МФУ, например от фирмы HP. Конструктивно блок питания принтера расположен на плате управления принтером. На этой же плате расположены высоковольтные источники питания для роликов первичного заряда, проявки и переноса см. рис. 1. Структурная схема блока питания представлена на рис. 2. Блок питания принтера формирует стабилизированные напряжения +24В используемое для питания двигателей, источников высоких напряжений, соленоидов, реле, вентилятора и т.п.; а также +5В и +3.3.В, необходимое для питания микросхем контроллера и форматера, памяти, светодиодов оптопар, датчиков, лазера, интерфейсных цепей и т.д.

Cдвоеный лазер модуля лазер-сканер.

Статья добавлена: 15.12.2017 Категория: Статьи

Cдвоенный лазер модуля лазер-сканер. Применение в модуле лазер-сканер сдвоенного лазера формирующего сразу два луча при сканировании, обеспечивает двойную скорость формирования скрытого изображения на поверхности фотобарабана (фоторецептора). Лазер представляет собой сдвоенный полупроводниковый лазер, работающий в красном диапазоне, формирующий сразу два луча. За счет этого скорость создания изображения сразу увеличивается вдвое. Луч лазера отражается от вращающегося полигонального зеркала, которое обеспечивает сканирование луча по поверхности барабана т.е. от его граней отражается лазерный луч и попадает на поверхность фотобарабана (см. рис. 1). Синхронизация работы лазера и определение моментов, когда луч находится в начале строки, применяется фотодетектор - датчик луча (Beam). Импульсный сигнал, формируемый этим фотодетектором, подается на микроконтроллер и определяет момент начала передачи данных. Общий принцип работы блока лазер-сканер демонстрируется на рис. 2. Для вращения сканирующего зеркала применяется трехфазный бесколлекторный двигатель, управляемый микросхемой драйвера двигателя. Драйверу двигателя соответствует собственная печатная плата.

Терминология видеосистем ПК.

Статья добавлена: 15.12.2017 Категория: Статьи

Терминология видеосистем ПК. Графический конвейер. Графический конвейер (Graphic Pipeline) — это некоторое программно-аппаратное средство, которое преобразует описание объектов в «мире» приложения в матрицу ячеек видеопамяти растрового дисплея. Его задача — создать иллюзию трехмерного изображения. В глобальных координатах приложение создает объекты, состоящие из трехмерных примитивов. В этом же пространстве располагаются источники освещения, а также определяется точка зрения и направление взгляда наблюдателя. Естественно, что наблюдателю видна только часть объектов: любое тело имеет как видимую (обращенную к наблюдателю), так и невидимую (обратную) сторону. Кроме того, тела могут перекрывать друг друга, полностью или частично. 1. Первая стадия графического конвейера - трансформация (Transformation). Взаимное расположение объектов относительно друг друга и их видимость зафиксированным наблюдателем обрабатывается на первой стадии графического конвейера, называемой трансформацией (Transformation). На этой стадии выполняются вращения, перемещения и масштабирование объектов, а затем и преобразование из глобального пространства в пространство наблюдения (world-to-viewspace transform), а из него и преобразование в «окно» наблюдения (viewspace-to-window transform), включая и проецирование с учетом перспективы. Попутно с преобразованием из глобального пространства в пространство наблюдения (до него или после) выполняется удаление невидимых поверхностей, что значительно сокращает объем информации, участвующей в дальнейшей обработке. 2. Вторая стадия графического конвейера - освещенность (Lighting). На следующей стадии конвейера (Lighting) определяется освещенность (и цвет) каждой точки проекции объектов, обусловленной установленными источниками освещения и свойствами поверхностей объектов. (T&L от англ. Transformation and Lighting - Трансформация и Освещение). 3. Третья стадия графического конвейера - растеризации (Rasterization). На стадии растеризации (Rasterization) формируется растровый образ в видеопамяти. На этой стадии на изображения поверхностей наносятся текстуры и выполняется интерполяция интенсивности цвета точек, улучшающая восприятие сформированного изображения. Весь процесс создания растрового изображения трехмерных объектов называется рендерингом (rendering).

BIOS — EFI, UEFI. Что такое UEFI?

Статья добавлена: 15.12.2017 Категория: Статьи

BIOS — EFI, UEFI. Что такое UEFI? Cистема UEFI – это комплекс спецификаций, появившийся как «загрузочная инициатива Интел» (Intel Boot Initiative) в очень далеком 1998 году. Причиной рождения инициативы послужило то, что ограничения, обусловленные BIOS, стали ощутимо тормозить прогресс вычислительных систем на основе новейших в ту пору интеловских 64-х разрядных процессоров Itanium для серверов. Несколько позже эта же инициатива стала называться EFI, а в 2005 году корпорация «подарила» свою разработку специально созданному под нее консорциуму UEFI Forum, главными членами которого стали помимо Intel такие зубры IT-индустрии, как AMD, Apple, IBM, Microsoft и ряд других, и EFI превратился в UEFI . UEFI (единый интерфейс EFI) — это стандартный интерфейс встроенного ПО для компьютеров, заменяющий BIOS. В создании этого стандарта участвовали более 140 технологических компаний, составляющих часть консорциума UEFI, включая Майкрософт. Стандарт был создан для улучшения взаимодействия программного обеспечения и устранения ограничений BIOS. Полностью построенная на основе программного кода, UEFI действительно стала объединенной кросс-платформенной системой. Уже сегодня спецификации UEFI предусмотрены в работе почти любой комбинации чипов с 32- и 64-битной архитектурой, выпускаемых AMD, Intel и многочисленными лицензиатами ARM. Единственное, что требуется для обеспечения этой универсальности, это скомпилировать исходный код под требования каждой конкретной платформы. Еще более усиливая сходство с ОС, спецификации UEFI включают в себя не только загрузочные, тестовые и рабочие сервисы, но также протоколы коммуникаций, драйверы устройств (UEFI изначально разрабатывалась для работы вне зависимости от операционных систем), функциональные расширения и даже собственную EFI-оболочку, из-под которой можно запускать собственные EFI-приложения. А уже поверх всего этого хозяйства расположен собственно загрузчик, отвечающий за запуск на компьютере основной операционной системы (или нескольких систем).

Правила и рекомендации по исследованию и устранению неисправности электронных схем ПК.

Статья добавлена: 15.12.2017 Категория: Статьи

Правила и рекомендации по исследованию и устранению неисправности электронных схем ПК. При исследовании электрических и электронных схем и выполнении действий по устранению неисправности необходимо соблюдать ряд несложных правил и требований снижающих риск усугубления ситуации:

Свойства тонера и качество печати.

Статья добавлена: 14.12.2017 Категория: Статьи

Свойства тонера и качество печати. Основными критериями в оценке качества создаваемого изображения специалисты считают максимальное разрешение печати, аппаратные алгоритмы растрирования, средства коррекции цветопередачи, а также свойства тонера и система его закрепления на носителе. Высокое разрешение и плавная передача цветовых градаций недостижимы без высококачественного мелкодисперсного тонера, равномерно распределяемого на поверхности фотобарабана и запечатываемого материала. Только сверхмелкие частицы тонера позволяют получать плавные серые переходы, четкие мелкие детали, реалистичность цветных фотографических изображений, и более четкие символы. Двухполимерный мелкодисперсный тонер HP UltraPrecise. В картриджах активно используется двухполимерный мелкодисперсный тонер HP UltraPrecise (размер частиц 5,6 мкм), который обеспечивает более ясные и четкие символы. Сверхмелкие частицы тонера позволяют получать гораздо более плавные серые переходы, более мелкие детали и реалистичный контраст при печати фотографических изображений. Этот мелкодисперсный тонер с термическим закреплением на нескольких уровнях, дает более четкие символы. Лазерная точность - ключевой критерий оценки устройства и качества создаваемого изображения. Основной вклад в его формирование вносят: максимальное разрешение печати, аппаратные алгоритмы растрирования, средства коррекции цветопередачи, свойства тонера и система его закрепления на носителе. Высокое разрешение и плавная передача цветовых градаций недостижимы без высококачественного мелкодисперсного тонера, равномерно распределяемого на поверхности фотобарабана и запечатываемого материала. Наиболее популярная и весьма эффективная, с точки зрения качества печати, тенденция: применение композитного тонера, включающего в себя смазочный ингредиент - частицы воска. Это позволяет отказаться от использования масла в термических аппаратах закрепления тонера на бумаге (так называемых «печках» или «фьюзерах»). Преимущества налицо на запечатываемых пленках отсутствуют масляные разводы, исчезает столь не любимая всеми глянцевость отпечатков. Тонер подобной структуры применяется в устройствах Canon, Epson, Hewlett-Packard, Oki и Xerox (рис. 1).

Общие принципы организации вывода на лазерные принтеры (ликбез).

Статья добавлена: 14.12.2017 Категория: Статьи

Общие принципы организации вывода на лазерные принтеры (ликбез). Лазерный принтер по своей натуре растровое страничное устройство, поэтому, в простейшем случае, поток данных, готовых к печати, должен содержать лишь перечисление координат всех точек, подлежащих закрашиванию. Но даже если исходный документ представлен в формате bitmap, далеко не всегда его можно использовать «как есть», и перенести изображение на бумагу «точка в точку» едва ли получится. Его, как правило и как минимум, придется пересчитать в другое разрешение (масштабировать). Типовой процесс печати документа на лазерном принтере состоит из следующих этапов: подключение; обработка данных; форматирование; растеризация; лазерное сканирование; наложение тонера; закрепление тонера. Приблизительно такая последовательность действий выполняется большинством лазерных принтеров. Массовые модели принтеров интенсивно используют в процессе печати компьютер, а более дорогие и совершенные модели большую часть операций выполняют с помощью собственного встроенного аппаратного и программного обеспечения. При подключении компьютера к принтеру задание печати отправляется на принтер (через интерфейс). Поток данных может быть двунаправленным, т.е. и принтер может посылать компьютеру сигналы, которые информируют его о приостановке или продолжении передачи потока данных. В принтере обычно установлен объем памяти намного меньший, чем объем задания печати. При переполнении буфера принтер сообщает компьютеру о приостановке передачи данных. Как только страница будет напечатана, принтер продолжает считывать данные из буфера и информирует компьютер о возобновлении передачи. Этот процесс называется синхронизацией (handshaking). Для нее используется специальный протокол. Для хранения данных задания печати используется память принтера, а если ее недостаточно, то необходимо добавить дополнительные модули. Некоторые модели принтеров оснащаются встроенным жестким диском для хранения данных печати и коллекций шрифтов. Процесс временного хранения заданий перед их печатью называется спулингом печати (print spooling). Современные принтеры обладают дополнительными коммуникационными возможностями, позволяя пользователю с помощью программного обеспечения осведомляться о состоянии принтера, конфигурировать параметры, которые ранее можно было установить только с помощью пульта управления на принтере. После загрузки данных в память принтера его встроенный микропроцессор начинает обработку данных (начинается процесс интерпретации кода ). Часть принтера выполняющая обработку данных называется контроллером или интерпретатором и включает программную поддержку языка (или языков) описания страниц. Вначале интерпретатор из поступивших данных выделяет управляющие команды и содержимое документа. Процессор принтера считывает код и выполняет команды, являющиеся частью процесса форматирования, а затем выполняет другие инструкции по конфигурации принтера (например, выбор лотка с бумагой, односторонняя или двухсторонняя печать и т.д.).

Cпецификация на протоколы доступа к накопителям SSD, подключенным к шине PCI Express.

Статья добавлена: 14.12.2017 Категория: Статьи

Cпецификация на протоколы доступа к накопителям SSD, подключенным к шине PCI Express. NVM Express, NVMe, NVMHCI (от англ.Non-Volatile Memory Host Controller Interface Specification) — спецификация на протоколы доступа к твердотельным накопителям (SSD), подключенным по шине PCI Express. "NVM" в названии спецификации обозначает энергонезависимую память, в качестве которой в SSD пока повсеместно используется флеш-память типа NAND. Логический интерфейс NVM Express был разработан с нуля, с учетом низких задержек и высокого параллелизма твердотельных накопителей с интерфейсом PCI Express, а также широкой распространенности многоядерных процессоров. NVMe позволяет повысить производительность за счет более полного использования параллелизма устройств и программного обеспечения. Накопители, использующие NVM Express, могут представлять собой полноразмерные карты расширения PCI Express либо устройства SATA Express. Спецификация M.2 (ранее известная как NGFF) для компактных накопителей также поддерживает NVM Express в качестве одного из логических интерфейсов. В середине-конце 2000-х многие SSD-накопители еще использовали компьютерные шины SATA, SASили Fibre Channel для взаимодействия с компьютером. На массовом рынке SSD чаще всего использовали интерфейс SATA, разработанный для подключения жестких дисков форм-факторов 3,5 и 2,5 дюйма. Однако SATA часто ограничивал возможности развития SSD, в частности, максимальную скорость передачи данных. Высокопроизводительные SSD изготавливались с интерфейсом PCI Express и ранее, однако они использовали нестандартные логические интерфейсы, либо применяли многоканальные SATA-/SAS-контроллеры, к которым на той же плате подключалось несколько SSD-контроллеров. Путем стандартизации интерфейсов SSD можно было бы сократить количество драйверов для операционных систем, производителям SSD больше не пришлось бы отвлекать ресурсы на создание и отладку драйверов. Подобным образом принятие спецификаций USB mass storage позволило создать большое разнообразие USB-флеш-накопителей, которые смогли работать с любыми компьютерами, не требуя оригинальных драйверов для каждой модели. Первые подробности о новом стандарте доступа к энергонезависимой памяти появились на Intel Developer Forumв еще в 2007 году, где NVMHCI был указан как интерфейс к персональному компьютеру для предлагаемого контроллера флеш-памяти с шиной ONFI. В 2007 году была собрана рабочая группа для проработки NVMHCI во главе с Intel. Первая спецификация NVMHCI 1.0 была закончена в апреле 2008 года и размещена на сайте Intel. Техническая проработка NVMe началась с второй половины 2009 года.Спецификации NVMe были разработаны "NVM Express Workgroup", в которую входило более 90 компаний, председателем группы был Amber Huffman из Intel. Первая версия NVMe 1.0 была издана 1 марта 2011 года, версия 1.1 - 11 октября 2012 года. В версии 1.1 были добавлены многопутевый ввод-вывод и возможность проведения DMA-операций по множеству адресов с фрагментами произвольной длины (arbitrary-length scatter-gather I/O). Последующие версии стандарта улучшили управление пространствами имен. Из-за изначальной фокусировки на корпоративных применениях стандарт NVMe 1.1 получил название "Enterprise NVMHCI". Обновление базовой спецификации NVMe, версии 1.0e, вышло в январе 2013 года.

Особенности микросхем NAND флэш-памяти.

Статья добавлена: 14.12.2017 Категория: Статьи

Особенности микросхем NAND флэш-памяти. Микросхемы NAND флэш-памяти оптимизированы для секторного выполнения операций. Флеш-память пишется блоками по 4 Кбайта, а стирается по 512 Кбайт. При модификации нескольких байт внутри некоторого блока контроллер выполняет следующую последовательность действий: - считывает блок, содержащий модифицируемый блок во внутренний буфер/кеш; - модифицирует необходимые байты; - выполняет стирание блока в микросхеме флэш-памяти; - вычисляет новое местоположение блока в соответствии с требованиями алгоритма перемешивания; - записывает блок на новое место. Как только вы записали информацию, она не может быть перезаписана до тех пор, пока не будет очищена. Проблема заключается в том, что минимальный размер записываемой информации не может быть меньше 4 Кб, а стереть данные можно минимум блоками по 512 Кб. Для этого контроллер группирует и переносит данные для освобождения целого блока (вот тут и сказывается оптимизация операционной системы (ОС) для работы с HDD). При удалении файлов операционная система не производит физическую очистку секторов на диске, а только помечает файлы как удаленные, и знает, что занятое ими место можно заново использовать. Работе самого накопителя HDD это никак не мешает. Хотя такой метод удаления помогает повысить производительность при работе с HDD, но при использовании SSD он становится проблемой. В SSD, как и в традиционных жестких дисках, данные все еще хранятся на диске после того, как они были удалены операционной системой. Но дело в том, что твердотельный накопитель не знает, какие из хранящихся данных являются полезными, а какие уже не нужны и вынужден все занятые блоки обрабатывать по длинному алгоритму. Прочитать, модифицировать и снова записать на место, после очистки затронутых операцией ячеек памяти, которые с точки зрения ОС уже удалены. Следовательно, чем больше блоков на SSD содержит полезные данные, тем чаще приходится прибегать к процедуре чтение > модификация > очистка > запись, вместо прямой записи. Вот здесь пользователи SSD сталкиваются с тем, что быстродействие диска заметно снижается по мере их заполнения файлами.

Разъемы и кабели для USB 3.0.

Статья добавлена: 13.12.2017 Категория: Статьи

Разъемы и кабели для USB 3.0. Для USB 3.0 предусмотрены новые группы контактов. Изменение количества контактов в новой ревизии привело и к изменению формфактора разъемов (разъём USB 3.0 Standart-A показан на рис. 1; USB 3.0 Standart-B - на рис. 2; USB 3.0 Micro-B – на рис. 3). Кабели стандарта А теперь оснащаются более длинным разъемом, в котором дополнительные контакты расположены чуть дальше и отдельно от относящихся к USB 2.0, соответственно и порт стал глубже. В разъемах типа-В они располагаются выше остальных контактов на отдельной колодке. Конструкция предусматривает, что ко всем портам можно подключать как новые, так и старые кабели, также существует обратная совместимость между разъемами типа-А, однако кабели типа-В обратно несовместимы.

GUID типов разделов.

Статья добавлена: 13.12.2017 Категория: Статьи

GUID типов разделов. Каждая файловая система получает свой GUID, однозначно ее идентифицирующий. Разработчики ОС для своих файловых систем формируют собственные коды GUID. Примечание 1: GUID для раздела данных Linux является дубликатом GUID для раздела основных данных Microsoft Windows. Примечание 2: Порядок записи байтов в написаниях GUID является little-endian. К примеру, GUID системного раздела EFI записан как: C12A7328-F81F-11D2-BA4B-00A0C93EC93B, что соответствует последовательности 16 байтов: 28 73 2A C1- 1F F8 - D2 11 - BA4B-00A0C93EC93B. Обратите внимание, что байты пишутся задом наперед только в первых трех блоках: (C12A7328-F81F-11D2). Идентификаторы (GUIDs) различных типов разделов:

Стр. 1 из 120      1 2 3 4>> 120

Лицензия