Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 1 из 180      1 2 3 4>> 180

80-ядерный ARM-процессор Ampere Altra (7нм).

Статья добавлена: 13.08.2020 Категория: Статьи

80-ядерный ARM-процессор Ampere Altra (7нм). Cпециалисты прогнозируют, что платформа ARM составит конкуренцию x86 в дата-центрах, но этого пока не происходит. По итогам 2019 года там доминирует Intel с долей 95,5%, а у AMD — 4,5%. Калифорнийская компания Ampere недавно представила первый в отрасли 80-ядерный серверный ARM-процессор на 64-битной архитектуре Ampere Altra. Однако новый ARM-процессор в целочисленном бенчмарке SPECrate 2017 показывал более высокую производительность, чем самый быстрый 64-ядерный AMD EPYC или топовый 28-ядерный Xeon семейства Cascade Lake. Это была уже серьёзная заявка (хотя результаты бенчмарка немного «подкручены», как описано ниже). Главное преимущество ARM — энергоэффективность, с которой по определению не могли сравниться процессоры x86 из-за особенностей архитектуры. У 80-ядерного Ampere Altra показатель TDP составлял 45-210 Вт, тактовая частота — 3 ГГц. Специалисты Ampere считают, что один поток на ядро вместо двух способствует более высокой безопасности, поскольку такой дизайн лучше защищает отдельные ядра от атак по сторонним каналам типа Meltdown и Spectre. Процессор был предназначен для серверных приложений, таких как аналитика данных, искусственный интеллект, базы данных, хранилища, телекоммуникационные стеки, пограничные вычисления, веб-хостинг и облачные приложения. Специально для приложений машинного обучения на аппаратном уровне реализована поддержка форматов данных FP16 (числа половинной точности) и INT8 (однобайтное представление целого числа). Есть также аппаратное ускорение хэширования AES и SHA-256. Микросхемы производились на заводе TSMC по техпроцессу 7 нм. Первые образцы CPU уже отправлены потенциальным клиентам, а массовое производство планируется начать в середине 2020 года.

Память GDDR4, GDDR5, GDDR5X, GDDR6, и Wide I/O, HMC и HBM (ликбез).

Статья добавлена: 13.08.2020 Категория: Статьи

GDDR4 используется на частотах от 1 ГГц DDR (2 ГГц) и вплоть до 2,2-2,4 ГГц DDR (4-4,8 ГГц), что обеспечивает очень высокую пропускную способность, особенно в секторе графических решений. GDDR4 ориентирована на рынок графических решений, GDDR4 обладает гораздо большим энергопотреблением. Компания Qimonda приступила к выпуску памяти стандарта GDDR-5 с увеличенной в два раза пропускной способностью, с новыми технологиями энергосбережения, а также алгоритмом выявления ошибок (память типа GDDR-5 в три раза быстрее нынешних микросхем GDDR-3, работающих на частоте 1600 МГц DDR). Память типа GDDR-5 использует две тактовых частоты для разных операций, что позволяет свести к минимуму задержки на операциях записи и чтения. Чипы памяти имеют плотность 512 Мбит, они способны передавать до 24 гигабайт данных в секунду, и работать на частотах свыше 3.0 ГГц DDR при напряжении 1.5 В. Далее пошли поставки памяти GDDR5X, GDDR6 (предвыборка: GDDR5-8n; GDDR5X-16n; GDDR6-16n), и далее - Wide I/O, HMC и HBM (эти стандарты основываются на так называемой stacked DRAM — размещении чипов памяти слоями, с одновременным доступом к разным микросхемам, что расширяет шину памяти (например — 4096 линий), значительно повышая пропускную способность и немного снижая задержки.

API Vulkan (ликбез).

Статья добавлена: 13.08.2020 Категория: Статьи

API Vulkan (ликбез). API Vulkan - «новое поколение OpenGL» или просто «glNext», Vulkan - это графический и вычислительный API нового поколения, который обеспечивает высокопроизводительный кросс-платформенный доступ к современным графическим процессорам, используемым в самых разных устройствах от ПК и консолей до мобильных телефонов и встроенных платформ. Vulkan API изначально был известен как «новое поколение OpenGL» или просто «glNext», но после анонса компания отказалась от этих названий в пользу названия Vulkan. Спецификация Vulkan 1.1 уже была запущена 7 марта 2018 года, чтобы расширить основные функциональные возможности Vulkan с функциями, запрошенными разработчиками, такими как операции с подгруппами, а также интегрировать широкий спектр проверенных расширений от Vulkan 1.0. 2018 год для игровой индустрии положил начало внедрению трассировки лучей в реальном времени: многие крупные компании и разработчики активно трудятся над решением этой проблемы (в том числе и NVIDIA). Очередным шагом NVIDIA в этой области стала работа над расширением для API Vulkan, которое, по аналогии с RTX для DXR, позволит использовать в играх трассировку лучей. NVIDIA осуществила перенос своей технологии RTX в Vulkan через расширение VK_NV_raytracing, которое хорошо совместимо с этим открытым графическим API.

API - графический интерфейс прикладного программирования (ликбез).

Статья добавлена: 12.08.2020 Категория: Статьи

API - графический интерфейс прикладного программирования (ликбез). Графический интерфейс прикладного программирования (Application Programming Interface, API) был разработан для разработчиков игровых программ. Самые первые массовые ускорители использовали Glide — API для трёхмерной графики, разработанный 3dfx Interactive для видеокарт на основе собственных графических процессоров Voodoo Graphics, а затем уже появились API OpenCL, DirectX. На программном уровне видеопроцессор для своей организации вычислений (расчётов трёхмерной графики) использует тот или иной интерфейс прикладного программирования (API). DirectX (как и OpenGL) - это графический интерфейс прикладного программирования (API). До появления API каждый производитель графических процессоров использовал собственный механизм общения с играми, и разработчикам игр приходилось писать отдельный код для каждого графического процессора, который они хотели поддержать. Поэтому для каждой игры указывалось, какие именно видеокарты она поддерживает. Чтобы решить эту проблему, которая являлась серьезным тормозом для игровой индустрии, и был разработан API, что позволило устранить зависимость между игрой и конкретным графическим процессором. Графические процессоры поддерживали определенные версии API, а разработчики игр писали коды под определенную версию API. Существует два основных типа API: Microsoft DirectX и OpenGL. При этом нужно отметить, что большинство игр ориентировано именно на Microsoft DirectX. Стандарт DirectX включает API для звука, музыки, устройств ввода и т.д. За 3D-графику в DirectX отвечает API Direct3D, и когда говорят о видеокартах, то имеют в виду именно его (поэтому понятия DirectX и Direct3D взаимозаменяемы). Стандарт DirectX постоянно обновляется. Каждая версия DirectX поддерживает определенные версии шейдеров (программ обработки вершин (Vertex Shader) и пикселов (Pixel Shader). Эти версии шейдеров называются Shader Model.

Проблемы электропитания компьютерных систем и их решение.

Статья добавлена: 12.08.2020 Категория: Статьи

Проблемы электропитания компьютерных систем и их решение. Проблемы электропитания импортного оборудования компьютерных систем ощущается особенно остро так как обеспечение нормальным питанием рассматривается, естественно, с позиций того окружения, в котором работает пользователь зарубежный. Но в российских электросетях более высокое напряжение питания 220 В (колеблется в пределах 210 - 230 В), иная частота сети - 50 Гц против 60 Гц. Такое отличие частот может вызвать повышенную нагрузку на трансформаторы блоков питания. Большой проблемой является для нас небрежный, а часто и неквалифицированный монтаж сети. Только сравнительно недавно электропроводку стали выполнять трехжильным проводом, в котором кроме «нейтрали» и «фазы» присутствует еще и «земля» (куда эта земля будет подключена это отдельный вопрос). Доступность трехфазных электропроводок облегчает решение вопроса предельно допустимой нагрузки на сеть, но порождает ряд других проблем иного рода. Случается, что из-за низкой квалификации, самоуверенности и торопливости при монтаже, разные розетки в одной комнате подключаются к разным фазам, напряжение между которыми составляет 380 В. При небрежном заземлении, которое осуществляется порой в разных точках, могут возникнуть опасные ситуации, поэтому в наших условиях проблему энергоснабжения обычно приходится начинать не с выбора источника бесперебойного питания (ИБП), а с перепланировки силовой электросети. К серьезнейшим недостаткам нашей электросети следует отнести даже не сбои в питании, а импульсы и перенапряжение. Даже для современных устройств с автоматической настройкой на напряжение сети значительно повышенное питание может привести к выходу их из строя. В этой связи при выборе устройства ИБП необходимо поинтересоваться и тем, как оно справляется с повышенным напряжением и с высоковольтными импульсами. Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к повреждениям оборудования, и проблемы, вызывающие повреждение данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышенным, любое напряжение ниже 205 В - пониженным. Повышенное напряжение может привести к выходу из строя источников питания компьютеров и другого оборудования. Электромоторы перегреваются при пониженном напряжении. Для микрокомпьютеров обычно используют источники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению. Аномалия в электропитании, которая особенно опасна для компьютеров и электроники вообще - это импульс, известный также как кратковременное повышение, выброс или колебание напряжения. Импульс - это очень короткое повышение напряжения, причиной которого может служить удар молнии в силовую линию, включение определенного типа силовых устройств либо управление двигателем переменной скорости. Типичный импульс, величина которого может составлять от нескольких сотен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд. Отключение энергии - проблема, требующая наиболее пристального внимания. Не заметить полную потерю питания действительно довольно сложно. Кратковременное отключение энергии - длящееся лишь от полупериода до пары периодов волны - часто называют выпадением питания. Радиочастотная интерференция ведет к возникновению электрошума, который накладывается на предполагаемо чистую, синусоидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в питающую шину компьютера, компьютер может ошибочно интерпретировать его как данные. Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления.

Интеллектуальные картриджи (ликбез).

Статья добавлена: 11.08.2020 Категория: Статьи

Интеллектуальные картриджи (ликбез). Производители оргтехники ограничивают использование сторонних картриджей снабжая свои изделия защитным устройством – чипом. «Оригинальный» картридж, оснащённый маленькой микросхемой (чипом), как правило, называют «интеллектуальным». Как правило такие Smart-картриджи удобны для конечного пользователя и выгодны компании-производителю оргтехники. Время, которое будет потрачено конкурентами на освоение новых технологий расходных материалов, а также для поиска решений обхода патентов, использованных в картридже, позволит производителю оргтехники получить весьма немалую прибыль. Чип – это небольшая «засекреченная» микросхема, в которой «прошита» информация о расходном материале, «язык» для общения с необходимым устройством и ресурс, на который рассчитан картридж. Кроме того, в нём содержится техническая информация о самом себе: серийный номер самого электронного компонента и другие «более специфические» данные. Сейчас практически все основные производители, осознав, насколько это выгодно и эффективно, перешли на чипованные расходные материалы. Эффект от чипов двойной - они отсекают очень многих «мелких» конкурентов и предоставляет пользователям ряд удобств при работе с техникой (например, благодаря электронному интеллекту принтер или многофункциональное устройство вовремя сообщает о необходимости заменить картриджи, предупреждает о нефирменном картридже, чип следит и за ресурсом принтера и регулярно посылает соответствующие команды на главную плату устройства). Основные решения в использовании чипов. Современные «интеллектуальные» чипы производятся двух видов: контактные и бесконтактные. Контактные чипы. Для подключения к электронным схемам управления и контроля принтера используют контакты. Smart-плата, как правило, видна невооружённым взглядом. Контактные платы, в отличие от плат второго вида, открыты. Бесконтактные решения не требуют непосредственного контакта для передачи и приёма сигналов. В картридже чип упакован в специальный герметичный пластиковый контейнер. Для обмена информацией с чипом, в принтере используются беспроводные технологии, для этого в принтере обычно установлена специальная антенна и приемо-передающая обрабатывающая микросхема. Оба вида чипов обычно крепятся на картриджах при помощи клея (простой и надёжный способ поместить микросхему, не прибегая к особым креплениям и изощрённым технологиям, но некоторые производители «прячут» чип с целью защиты от прямого доступа к нему). Таким образом, каждый расходный материал и аппарат, в котором он используется, имеет канал связи для считывания необходимых данных и записи информации на микросхему (чип), в ряде аппаратов для этого используют контактный метод, а в других изделиях – беспроводную связь. Smart Chip представляет собой микросхему флэш-памяти небольшого объёма. В ней прописаны ресурс и опознавательные сигналы, на неё же записываются данные, посылаемые с принтера. Это простая, но всё-таки двусторонняя связь принтера и картриджа.

Цветопередача LCD-монитора.

Статья добавлена: 11.08.2020 Категория: Статьи

Цветопередача LCD-монитора. Проблемы цвета и его правильного воспроизведения (цветопередачи) были актуальны во все времена для специалистов в области фотографии, полиграфии, а теперь и компьютерного дизайна и смежных профессий. Можно наблюдать, что на дисплее цифрового фотоаппарата цветное изображение выглядит одним, при просмотре на мониторе у него уже несколько другой оттенок, а отпечаток, сделанный на струйном принтере, имеет цвет, отличный и от первого, и от второго. Начало исследованиям, ставшим основой современной науки о цвете, положил Исаак Ньютон. Он определил, что белый цвет является смешением всех цветов, первым выделил спектральные цвета – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый. Свет это видимая часть электромагнитного спектра, разновидность электромагнитного излучения, имеющая такую же природу, как рентгеновские лучи, инфракрасное и ультрафиолетовое излучение и радиоволны. Все эти виды излучений различаются длиной волны – расстоянием между её гребнями. Если рентгеновские лучи обладают свойством создавать изображение на покрытой серебром плёнке, радиоволны помогают передавать звук на расстоянии, то световые волны обладают свойством восприниматься человеческим глазом. Глаз способен воспринимать волны длиной от 400 до 700 нанометров (нанометр – одна миллиардная метра, единица измерения длины световых волн). С двух сторон от видимой части спектра находятся ультрафиолетовые и инфракрасные области, которые не воспринимаются человеческим глазом, но могут улавливаться специальным оборудованием. С помощью инфракрасного излучения работают камеры ночного видения, а ультрафиолетовое излучение хоть и невидимо человеческому глазу, но может нанести зрению значительный вред.

Профилактика, диагностика копировальных аппаратов.

Статья добавлена: 17.07.2020 Категория: Статьи

Профилактика, диагностика копировальных аппаратов. Известно, что качественное сервисное обслуживание копировальных аппаратов (КА) позволяет поддерживать его в постоянной готовности, использовать его в эффективном режиме, в сжатые сроки проводить ремонтно-восстановительные работы, существенно увеличить его ресурс. Обычно все работы по сервисному обслуживанию проводятся в соответствии с требованиями «Руководства по техническому обслуживанию» фирмы-изготовителя КА. Известно, что сроки профилактики КА обычно следующие: месячные, трехмесячные, полугодовые и годовые. Например, комплекс профилактических мероприятий, проводимых при ежемесячном обслуживании КА, предполагает следующие этапы:

Сканер МФУ. Программное обеспечение.

Статья добавлена: 17.07.2020 Категория: Статьи

Сканер МФУ. Программное обеспечение. Для использования сканера многофункционального аппарата, например, совместно с персональным компьютером в качестве его периферийного устройства необходимо еще и программное обеспечение двух типов: - драйверы, - программы обработки изображения. Драйвер устройства обеспечивает взаимосвязь со сканером, посылая команды и принимая данные. Большинство сканеров уже давно используют управляющий интерфейс TWAIN. Этот интерфейс воспринимает графические данные и является стандартным для поддержки работы любой программы, обрабатывающей изображения. Управляющий интерфейс TWAIN позволяет программному обеспечению, обрабатывающему изображения, работать со сканером, не учитывая технических деталей, относящихся к нему. Это позволяет создавать прикладные программы. не зависящие от устройств. Помимо драйвера устройства, необходима программа, которая позволит начать сканирование, получить изображение и сохранить его на диске. Если необходимо сделать что-либо посложнее простого сканирования изображения, то понадобится более сложная программа. Эта программа должна обеспечивать настройку цвета, копирование изображения и другие манипуляции с ним. Все прекрасные аппаратные возможности сканеров имеют смысл только в том случае, если эти устройства поставляются с качественным программным обеспечением, которое обеспечивает решение задач цветокоррекции и цветоделения оцифрованного изображения, a также калибровки сканера и его характеризации (построения программного ICC-профиля). Эти продукты выполняют полный цикл работ по предпечатной подготовке получаемых изображений: цветоделение; цветокоррекция в нужном цветовом пространстве; качественная фильтрация изображения (удаление растра или нерезкое маскирование); сохранение сформированного файла в нужном формате для последующей верстки; предварительная настройка параметров сканирования. Калибровка и характеризация сканеров следующий важный момент для работы в конкретных условиях и с конкретными материалами.

Таймеры. Многофункциональные таймеры (ликбез).

Статья добавлена: 17.07.2020 Категория: Статьи

Таймеры. Многофункциональные таймеры (ликбез). Многие микроконтроллеры, например SX48/52BD, имеют по два многофункциональных таймера, которые имеют названия Т1 и Т2. Их функции служат дополнением к функциям таймера RTCC и сторожевого таймера, имеющихся во всех типах микроконтроллеров SX. Эти таймеры позволяют высвободить ресурсы центрального процессора для нужд приложения. Особенно это касается приложений реального времени, таких, как генерация сигнала с ШИМ, управление двигателями, управление тиристорными преобразователями, генерация синусоидальных сигналов и, наконец, сбор данных. Каждый таймер построен на основе 16-разрядных регистров. Кроме того, каждому из них соответствуют 4 вывода микроконтроллера: один вывод — вход тактового сигнала, 2 вывода — входы захвата и еще один вывод — выход таймера. Выводы, которые используются многофункциональными таймерами, имеют также и другие функции: выводы таймера Т1 являются выводами порта В, а выводы таймера Т2 — выводами порта С. Режимы работы таймеров. Каждый таймер может работать в четырех различных режимах. В первом режиме таймер работает в качестве генератора ШИМ-сигнала (ШИМ — широтно-импульсная модуляция). Во втором он используется в качестве программного счетчика. В третьем режиме таймер используется для подсчета внешних событий. И наконец, четвертый режим позволяет запоминать состояние счетчика по внешнему сигналу («захват») и сравнивать его с заданным значением. Режим ШИМ. Широтно-импульсная модуляция (рис. 1) заключается в генерировании сигнала с программируемыми частотой и коэффициентом заполнения.

Особенности накопителей SSD.

Статья добавлена: 15.07.2020 Категория: Статьи

Особенности накопителей SSD. Cокращение SSD (Solid State Drive или Solid State Disk) обозначает твердотельный накопитель - энергонезависимое, перезаписываемое запоминающее устройство без движущихся механических частей с использованием флэш-памяти. Падение SSD не должно привести к порче данных, если только точки пайки выдержат удар, а накопитель не будет физически повреждён. Кроме того, SSD не так восприимчивы к экстремальным температурам, а последнее поколение продуктов даёт намного меньшее энергопотребление по сравнению с обычными жёсткими дисками. Производительность по-прежнему является основной причиной выбора SSD (SSD часто оказываются существенно быстрее жёстких дисков). Накопители SSD полностью эмулируют работу жёсткого диска. Преимущества SSD дисков всем хорошо известны: высокая механическая надёжность, отсутствие движущихся частей, высокая скорость чтения/записи, низкий вес, меньшее энергопотребление. У SSD дисков сравнительно небольшой емкости отличий от USB Flash не так уж и много: по сути дела, SSD накопитель - это та же большая флэшка. Но в отличие от флэшек, в SSD дополнительно используются микросхемы DDR DRAM кеш-памяти. Это связано со спецификой работы и возросшей в несколько раз скоростью обмена данными между контроллером и интерфейсом, например, SATA. Четвертое поколение PCIe SSD (поколение дисков серии Z-Drive R2) было построено на основе новых оригинальных решений, оно отличается повышенной производительностью и универсальностью благодаря применению оптимизированных NAND модулей. Диски Z-Drive R2 представляют собой комплексное решение, которое обеспечивает исключительно высокую производительность при работе с множеством приложений и демонстрирует лучшие характеристики процессора ввода/вывода и высокую пропускную способность. Кроме того, это были единственные самозагружаемые PCIe SSD, которые обеспечиваются выездным сервисным обслуживанием, и благодаря инновационной конструкции со сменными модулями позволяют с минимальными затратами производить модернизацию и увеличивать емкость, что дает беспрецедентные возможности разработчикам архитектуры памяти (вместо постоянных NAND модулей с поверхностным монтажом в R2 используются сменные модули). Диски Z-Drive R2 не только более производительные и надежные, чем обычные накопительные устройства, они также значительно сокращают затраты на обслуживание и общие расходы владения. Кроме того, OCZ предоставляет производителям оборудования уникальные возможности для индивидуальных заказов, если требуется специальная аппаратура или встроенные программы. Диски Z-Drive R2 оптимально подходят для использования в сетях хранения данных, рабочих станциях и серверах. Скорость передачи данных Z-Drive R2 достигает 1,4 Гбайт/с, при этом надежность и долговечность выше, чем у механических жестких дисков. В настоящее время SSD накопители практически догнали традиционные жесткие диски в плане емкости. SSD накопитель OCZ IBIS XL был выполнен в форм-факторе 5,25 дюйма, а его емкость достигала 4 Тбайт (причем, это значение могло доходить и до 8 Тбайт). Для подключения к системе в твердотельном накопителе OCZ IBIS XL присутствует фирменный запатентованный интерфейс High Speed Data Link (HSDL), обладающий очень высокой пропускной способностью. Кроме того, можно было организовать подключение четырех таких накопителей через единую HSDL карту с шиной PCIe х8, что позволяет создавать RAID массив объемом в 32 Тбайт. Каждый SSD накопитель OCZ IBIS XL был способен обеспечить производительность на уровне 200 000 операций ввода-вывода в секунду, а в упомянутом RAID массиве этот показатель превышал 750 000 операций ввода-вывода в секунду. Естественно, решения такого рода предназначены для корпоративного рынка и вряд ли заинтересуют кого-то из рядовых потребителей. SSD диски с меньшей емкостью, например, 3,5-дюймовые SSD диски OCZ IBIS в 720 Гбайт. С новым интерфейсом HSDL (High-Speed Data Link) они обеспечивали передачу данных со скоростью до 740 Мбайт/с (при чтении) и до 720 Мбайт/с (при записи). SSD-контроллер твердотельного диска обеспечивает выполнение операций чтения/записи, и управление структурой размещения данных. Основываясь на матрице размещения блоков, в какие ячейки уже проводилась запись, а в какие еще нет, контроллер должен оптимизировать скорость записи и обеспечить максимально длительный срок службы SSD-диска.

Микросхема защиты от электростатичеcкого пробоя 74F1071.

Статья добавлена: 14.07.2020 Категория: Статьи

Микросхема защиты от электростатичеcкого пробоя 74F1071. Микросхемы защиты от электрического пробоя находят широкое применение в печатающих устройствах. Они выполняют здесь роль защиты интерфейсных цепей от пробоя при подключении принтера к ПК. В этой статье рассматривается одна из самых распространенных микросхем такого типа. Микросхема 74F1071 применяется для фиксации отрицательных и положительных выбросов напряжения, разработана для ограничения напряжения на сигнальных линиях. Кроме того микросхема осуществляет защиту чувствительных к статическим разрядам устройств от электрического пробоя вследствие электростатического разряда (ESD). Микросхема обеспечивает фиксацию опасного напряжения на уровне 0В ("земля"), если входное напряжение меньше 0.5В и больше 7В. 74F1071 обеспечивает защиту 18 сигнальных линий. Общие сведения об микросхеме 74F1071: - представляет собой массив из 18 стабилитронов в 20 контактном корпусе (рис.1); -использует специальную технологию FAST (Fairchild) для ограничения двуполярного напряжения; -имеет два центральных контакта с минимальной индуктивностью для подключения к "земле"; -обеспечивает надежную защиту от электростатического разряда; - имеет малую входная емкость; -оптимальна для применения с 5В CMOS/TTL.

Стр. 1 из 180      1 2 3 4>> 180

Лицензия