Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 1 из 203      1 2 3 4>> 203

Оценка качества сетевой службы.

Статья добавлена: 23.09.2022 Категория: Статьи

Оценка качества сетевой службы. Реализация сетевых служб осуществляется программными средствами. Основные службы (файловая служба и служба печати) обычно предоставляются сетевой операционной системой (ОС), а вспомогательные (служба баз данных, факса или передачи голоса) — системными сетевыми приложениями или утилитами, работающими под управлением сетевой ОС. Распределение номенклатуры служб между ОС и утилитами может меняться в конкретных реализациях ОС. Разработчикам сетевых служб приходится решать проблемы, которые свойственны любым распределенным приложениям (определение протокола взаимодействия между клиентской и серверной частями, распределение функций между ними, выбор схемы адресации приложений и др.). Одним из главных показателей качества сетевой службы является ее удобство. Качество сетевой службы зависит и от качества пользовательского интерфейса, его интуитивной понятности, рациональности, наглядности. Для определения степени удобства доступа к разделяемому ресурсу часто используют термин «прозрачность». При «прозрачном» доступе пользователь не замечает, где расположен нужный ему ресурс — на удаленном или на его компьютере. После того как пользователь смонтировал удаленную файловую систему в свое дерево каталогов, доступ к удаленным файлам становится для него совершенно прозрачным. Сама операция монтирования также может иметь разную степень прозрачности. В сетях с меньшей прозрачностью пользователь должен знать и задавать в команде имя компьютера, на котором хранится удаленная файловая система. В сетях с большей степенью прозрачности соответствующий программный компонент сети производит поиск разделяемых томов файлов безотносительно мест их хранения, а затем предоставляет их пользователю в удобном для него виде, например в виде списка или набора пиктограмм. В обеспечении прозрачности важен способ адресации (именования) разделяемых сетевых ресурсов. Имена разделяемых сетевых ресурсов не должны зависеть от их физического расположения на том или ином компьютере. Пользователь не должен ничего менять в своей работе, если администратор сети переместил том или каталог с одного компьютера на другой. Сам администратор и сетевая операционная система конечно имеют информацию о расположении файловых систем, но эта информация от пользователя скрыта. Высокая степень прозрачности пока еще редко встречается в сетях, поэтому обычно для получения доступа к ресурсам определенного компьютера сначала приходится устанавливать с ним логическое соединение (как было, например, в сетях Windows NT). Таким образом, подводя итоги можно отметить: ... ...

Области применения и возможности волоконной оптики.

Статья добавлена: 23.09.2022 Категория: Статьи

Области применения и возможности волоконной оптики. Волоконная оптика позволяет передавать информацию с существенно более высокими скоростями по сравнению с медными кабелями и имеет гораздо более приемлемую стоимость и меньше ограничений, чем другие технологии. Возможности волоконной оптики только начинают реализовываться. Волоконно-оптические линии превосходят по своим характеристикам аналоги, основанные на медном кабеле и микроволновой технологии, возможности которых имеют меньший потенциал развития, чем начинающая развиваться волоконно-оптическая технология. Волоконная оптика обещает стать неотъемлемой частью информационной революции, и частью всемирной кабельной сети. Волоконная оптика эффективно используется в различных направлениях: соединение электронного оборудования в офисе с оборудованием в других офисах; трансляция переговоров через громадные расстояния; распространение по кабелю телевизионного изображения; безопасное соединение электронных блоков в автомобиле; управление производственными процессами в промышленности. Волоконная оптика является новой технологией, активно продолжающей свое развитие, но уже доказана необходимость ее применения как среды передачи для различных прикладных задач, а область ее применения постоянно существенно расширяется. Волоконная оптика используется в компьютерных и сетевых технологиях. Волоконная оптика используется как коммуникационная среда, соединяющая электронные устройства. Волоконно-оптическая связь может быть организована между компьютером и его периферийными устройствами, между двумя телефонными станциями или между станком и его контроллером на автоматизированном заводе. Применение волоконной оптики связано с преобразованием электрического сигнала в световой и обратно, стоимость волоконной оптики пока достаточно высока, но преимущества волоконной оптики определяемые уникальными характеристиками оптоволокна делают его наиболее подходящей передающей средой во множестве различных областей техники. Эти уникальные характеристики оптоволокна органично согласовываются, позволяя передавать данные с высокой скоростью на большие дистанции и с небольшим числом ошибок. Оптоволоконные линии обеспечивают: - широкую полосу пропускания линии; - нечувствительность линий к электромагнитным помехам; - низкие потери; - малый вес и малый размер; - безопасность и секретность. Важность каждого из этих достоинств зависит от конкретного применения оптоволоконных линий. В одном случае широкая полоса пропускания и низкие потери являются самыми ценными характеристиками. В других случаях важна безопасность и секретность передачи данных, которые легко обеспечиваются при использовании волоконной оптики.

Сканирующие устройства в копирах (ликбез).

Статья добавлена: 21.09.2022 Категория: Статьи

Сканирующие устройства в копирах (ликбез). Любое сканирующее устройство является сложным электромеханическим устройством в котором качество получаемых цифровых изображений в большой степени определяется конструктивной реализацией механизма сканирования, особенностью оптической системы, а также от качества, работающих в паре, двух центральных компонентов блока оцифровки изображений: трехлинейной светочувствительной матрицы (чаще называемой ПЗС-матрицей) и аналогово-цифрового преобразователя (АЦП). С другой стороны, огромную роль в формировании возможностей сканера играет программное обеспечение, позволяющее производить сложную обработку и преобразование цифровых описаний изображений. Оцифровка сканируемого изображения в большинстве сканирующих устройств (среднего класса) выполняется с перемещением каретки сканирующей лампы. Механика такой оцифровки состоит в том, что сканирующая лампа, последовательно меняет свое положение, относительно размещенного на столе оригинала, на величину шага, минимальная величина которого определяет механическое разрешение сканера. При этом отраженный от непрозрачного оригинала (или прошедший сквозь прозрачный оригинал) свет фокусируется через оптическую систему на ПЗС-матрицу, находящуюся под ложем сканера. Существует несколько вариантов построения кинематики таких сканеров, различающихся по числу и типу подвижных компонентов. Наиболее распространенный и менее дорогой вариант использует единый, перемещающийся относительно неподвижного стола, модуль с оптической системой и ПЗС-матрицей, в котором происходит обработка светового потока с отсканированной информацией. Значительно реже применяется конструкция с неподвижной ПЗС-матрицей, в которой сканирование осуществляется либо за счет движения стола с оригиналом, либо перемещением ламп и компонентов оптической системы. Физические принципы построения полупроводниковых ПЗС-структур обуславливают преимущества и недостатки перечисленных вариантов, любые внешние воздействия, способные даже незначительно повысить рабочую температуру светочувствительных полупроводниковых элементов, приводят к возникновению в них паразитных токов. Кроме того, имеются погрешности, связанные с обработкой светового потока в подвижной оптической системе, любой, даже идеально собранный, механизм со временем изнашивается, что и приводит к снижению точности работы. Очень редко на практике в сканирующих устройствах используют почти стационарную оптическую систему, в которой движется только линза авто-фокусировки и неподвижна ПЗС-матрица. Оптическая система играет главную определяющую роль в формировании отчетливого изображения, существенное значение имеет большая глубина резкости и использование длиннофокусной оптики.

Управление внешними устройствами ПК и оперативной памятью.

Статья добавлена: 20.09.2022 Категория: Статьи

Управление внешними устройствами ПК и оперативной памятью. Внешние устройства подключаются к системному интерфейсу через специальные устройства - контроллеры (адаптеры). Каждый контроллер имеет в своем составе ряд программно-доступных регистров (как минимум, имеет хотя бы регистр данных, регистр состояния и регистр управления). Каждый контроллер имеет свой набор команд. Получив через свои регистры команду от выполняющего программу ввода-вывода процессора, контроллер отрабатывает команду автономно, управляя внешним устройством через "малый" интерфейс между устройством и контроллером. Контроллер, отрабатывая принятую от процессора команду, пересылает во внешнее устройство свои команды, данные и читает из устройства состояния. Кроме того, контроллер может выполнять ряд вспомогательных аппаратных функций, инициируемых аппаратными сигналами, или записью управляющей информации в его программно-доступный регистр (например, "сброс" по сигналу RESET, или включение процесса самодиагностики жесткого диска). Существуют простые контроллеры и сложные (интеллектуальные) контроллеры, выполняющие более сложные аппаратные функции и команды. Процессор управляет внешним устройством, выполняя соответствующую программу ввода/вывода, где он с помощью команд IN, OUT (чтение порта, запись в порт) осуществляет доступ к программно-доступным регистрам контроллера. Например, в регистр управления процессор записывает команду, из регистра состояния читает информацию о состоянии устройства и контроллера, в регистр данных записывает выводимые на устройство данные или читает из регистра данных считываемую с устройства информацию. Возможны два способа организации программного обмена с внешними устройствами: ... ...

Интеллектуальные картриджи, интеллектуальные чипы (ликбез).

Статья добавлена: 19.09.2022 Категория: Статьи

Интеллектуальные картриджи, интеллектуальные чипы (ликбез). Производители оргтехники, принтеров или многофункциональных устройств ограничивают использование сторонних картриджей снабжая свои изделия защитным устройством – чипом. «Оригинальный» картридж, оснащённый маленькой микросхемой (чипом), как правило, называют «интеллектуальным». Как правило такие Smart-картриджи удобны для конечного пользователя и выгодны компании-производителю оргтехники. Чип – это небольшая «засекреченная» микросхема, в которой «прошита» информация о расходном материале, «язык» для общения с необходимым устройством и ресурс, на который рассчитан картридж. Кроме того, в нём содержится техническая информация о самом себе: серийный номер самого электронного компонента и другие «более специфические» данные. Сейчас практически все основные производители, осознав, насколько это выгодно и эффективно, перешли на чипованные расходные материалы. Эффект от чипов двойной - они отсекают очень многих «мелких» конкурентов и предоставляет пользователям ряд удобств при работе с техникой (например, благодаря электронному интеллекту принтер или многофункциональное устройство вовремя сообщает о необходимости заменить картриджи, предупреждает о нефирменном картридже, чип следит и за ресурсом принтера и регулярно посылает соответствующие команды на главную плату устройства). Современные «интеллектуальные» чипы производятся двух видов: контактные и бесконтактные. Контактные чипы для подключения к электронным схемам управления и контроля принтера используют контакты. Smart-плата, как правило, видна невооружённым взглядом. Контактные платы, в отличие от плат второго вида, открыты. Бесконтактные решения не требуют непосредственного контакта для передачи и приёма сигналов. Например, в картридже чип может быть упакован в специальный герметичный пластиковый контейнер. Для обмена информацией с чипом, в принтере используются беспроводные технологии, для этого в принтере установлена специальная антенна и приемо-передающая обрабатывающая микросхема. Оба вида чипов часто крепятся на картриджах при помощи клея (простой и надёжный способ поместить микросхему, не прибегая к особым креплениям и изощрённым технологиям, но некоторые производители «прячут» чип с целью защиты от прямого доступа к нему. Таким образом, каждый расходный материал и аппарат, в котором он используется, имеет канал связи для считывания необходимых данных и записи информации на микросхему (чип), в ряде аппаратов для этого используют контактный метод, а в других изделиях – беспроводную связь. Smart Chip представляет собой микросхему флэш-памяти небольшого объёма. В ней прописаны ресурс и опознавательные сигналы, на неё же записываются данные, посылаемые с принтера. Это простая, но всё-таки двусторонняя связь принтера и картриджа. При установке картриджа, принтер запрашивает сведения с установленного расходного материала, а чип предоставляет то, что на нём прошито. Если схема «защиты» опознала фирменный картридж, то устройство печати сигнализирует о своей готовности к печати. Если установлен картридж без чипа, или чип в картридже «стороннего» производителя, то будет выдано сообщение об ошибке на дисплей принтера или через программное обеспечение на дисплей компьютера, ... ...

Техническое обслуживание копировальных аппаратов.

Статья добавлена: 16.09.2022 Категория: Статьи

Техническое обслуживание копировальных аппаратов. Современная копировальная техника, включая и бюджетные офисные модели, и дорогие многофункциональные аппараты, несмотря на надежность, требует периодических сервисных мероприятий: плановой замены материалов и деталей, выработавших ресурс, очистки процессора и оптики, настройки экспозиции и т.д. Перепад температуры и влажности, атмосферные взвеси, бумажная пыль, броски в сетях питания - вот далеко неполный перечень факторов, влияющих на стабильность и качество работы копиров. Для поддержания нормальной работы копира требуется периодическое сервисное обслуживание. Как показывает практика такие проблемы, как: грязные копии, перерасход тонера, частое застревание бумаги, а также ряд других неисправностей решаются путем проведения квалифицированной профилактики аппарата сертифицированным инженером. Соблюдение требований правильной эксплуатации и периодическое проведение технического обслуживания (ТО) копировальных аппаратов позволит поддерживать их работоспособность и получение качественных копий документов. Проведение регулярных профилактических сервисных мер увеличивает срок службы отдельных узлов и аппарата в целом. А это прямая экономия средств организации. Кроме того, профилактика позволяет также обеспечить безопасные и комфортные условия труда для пользователей, работающих с данными видами офисной техники каждый день. Эффективная служба сервиса необходима для качественной и бесперебойной работы копировального аппарата. "Работоспособность" Вашего аппарата зависит от того, насколько грамотно, регулярно, а в отдельных случаях, оперативно, работает сервисная служба. Каковы особенности технического обслуживания копиров? Дело в том, что копировальный аппарат это сложное устройство внутри которого есть узлы, работающие на высоких напряжениях (тысячи вольт), узел фиксации, работающий при высокой температуре (более 150о С), оптический блок (зеркала, линзы), сложные шестеренчатые и ременные приводы. И от качества работы всех этих узлов напрямую зависит качество копии. ... ...

Способы защиты от потери данных на жестком диске.

Статья добавлена: 16.09.2022 Категория: Статьи

Способы защиты от потери данных на жестком диске. Полностью застраховаться от возможной потери данных на жестком диске практически нереально. А вот значительно снизить вероятность потери можно, но для этого необходимо предпринять ряд достаточно простых мер. 1. Защищайте жесткий диск от перегрева. Современные жесткие диски отличаются от более устаревших моделей скоростью вращения пластин винчестеров, что составляет на сегодняшний день - 5400 – 7200 об/мин, а у моделей класса Hi-End – 10000 и даже 15000 об/мин. Естественно увеличение скорости вращения, не могло не сказаться на нагревании носителя, что в свою очередь может привести к выходу из строя электроники или заклиниванию двигателя. Именно поэтому на все высокопроизводительные HDD необходимо устанавливать вентилятор. 2. Защищайте жесткий диск от вибраций. Жесткие диски очень чувствительны ко всякого рода вибрациям и тряске. Неосторожное обращение с накопителем может привести к разрушению головок и дисков, что повлечет за собой потерю данных. На сегодняшний день, вибрации и удары при транспортировке и установке винчестера в компьютер являются одними из самых широко распространенных причин поломок носителей информации в первые месяцы их работы. 3. Используйте источник бесперебойного питания. При резких скачках напряжения и нестабильности электросети, что является довольно частым явлением, устройство бесперебойного питания поможет защитить ваш hdd от повреждения. Кроме того, источник бесперебойного питания позволит на небольшой промежуток времени продлить работу компьютера, что сделает возможным сохранить результаты вашей работы и корректно завершить работу ОС. 4. Не забывайте регулярно делать резервные копии. Самый надежный способ снизить риск потери данных – резервирование. Важную информацию необходимо регулярно копировать на другой носитель: CD или DVD, другой винчестер, ленточный накопитель. Желательно не хранить резервные копии в том же помещении, где хранятся оригинальные данные. 5. Используйте антивирусные программы. Среди множества существующих на сегодняшний день вирусов есть и такие, которые могут разрушить ваши данные, хранящиеся на жестком диске компьютера. Установка антивируса и его регулярное обновление позволит защитить информацию. 6. Регулярно проводите дефрагментацию жесткого диска. Регулярная дефрагментация жесткого диска позволяет перегруппировать данные так, чтобы файлы были записаны в последовательных секторах. Эта операция позволяет не только повысить скорость работы с диском, но и существенно повысить вероятность восстановления информации при возникновении проблем 7. Используйте дисковые утилиты соблюдая меры предосторожности. Будьте осторожны при использовании каких-либо дисковых утилит, будь то утилиты для изменения логической структуры диска, диагностики накопителя, или, к примеру, для восстановления информации. Удостоверьтесь, что утилита совместима с установленной версией операционной системы, и перед ее использованием обязательно сделайте резервную копию важных данных на другой накопитель. Никогда не используйте программы для восстановления информации, если есть подозрения, что жесткий диск неисправен – это может привести к необратимой потере данных. Если, несмотря на все принятые меры, информация все же была потеряна, обратитесь к специалистам по восстановлению информации. Без достаточного опыта самостоятельное восстановление данных может только навредить. Существует еще несколько вариантов опасности для вашего винчестера: 1. Применение нелицензионных программ и программ-суррогатов. 2. Применение программ без должного понимания сути проблемы. 3. Бездумное «экспериментирование» с заменой деталей. 4. Разборка или попытка ремонта с применением «неправильного» инструмента, в «антисанитарных» условиях, или лицами, не уполномоченными заниматься ремонтом HDD. 5. Бездумное включение неисправного винчестера. Приведенные ниже простые рекомендации и советы помогут избежать возникновения ряда возможных проблем:

Последовательность действий при поиске неисправности в системной плате ПК (ликбез).

Статья добавлена: 15.09.2022 Категория: Статьи

Последовательность действий при поиске неисправности в системной плате ПК (ликбез). Действия при поиске неисправности сводятся к получению диагностической информации, ее анализу и планированию последующих действий, результатом которых является получение дополнительной диагностической информации. Используя эту информацию можно уточнить и скорректировать план следующего этапа работы. Последовательность этих действий должна вести к сужению области, в которой ведется поиск, и, в конечном счете, к обнаружению дефекта. Такой алгоритм действий позволяет на каждом витке поиска за счет анализа получать ответ на вопрос: а что делать дальше? И непрерывно, целенаправленно вести поиск до желаемого результата. Например, перед нами на рабочем столе на ходится исследуемая системная плата ПК, и нам предстоит провести работу по поиску и устранению дефекта платы. Выделим основные этапы, позволяющие эффективно провести диагностику платы и локализовать причину неисправности. 1) Получение диагностической информации до включения электропитания. Прежде всего, выполним сбор информации путем осмотра системной платы с оценкой: - состояния каждого элемента по его внешнему виду; - условий эксплуатации системной платы (запыленность, наличие изменений геометрической формы платы, состояние контактов разъемов, нарушения соединений пайкой); - комплектности платы; - правильности установки элементов платы подключаемых через сокеты, "кроватки"; - ремонтировалась ли ранее плата или нет; - затем фиксируем полученную информацию на бумаге, зарисовываем исходное положение перемычек (джамперов) и микропереключателей; - измеряем сопротивление между контактами напряжений и "землей" на разъеме электропитания (при прямом и обратном измерении должна быть видна разница измеренного сопротивления в соотношении примерно 3:2); - измеряем "дежурное" напряжение питания; - измеряем напряжение на батарее CMOS-памяти (примерно 2,8 - 3,3 В); - контролируем наличие импульсов для часов реального времени. 2) Получение диагностической информации после включения электропитания системного блока питания ПК. По включению тумблера "Сеть" на системном блоке электропитания ПК на плату поступает "дежурное" напряжение питания (5В), из которого на системной плате формируются дежурные напряжения 3,3 В и 1,8 В. "Дежурные" напряжения питают ряд схем платы, обеспечивающих выполнение процедуры включения (по нажатию кнопки) основных вторичных напряжений питания (+12/-12 В, +5/-5 В, 3,3 В и др.), формирование сигнала начального сброса этих схем и др. Если (по нажатию кнопки) вторичные напряжения появились и они находятся в пределах заданного допуска, то схемы контроля формируют сигнал PowerGood (P.G.- хорошее питание). Из вторичных напряжений системного блока питания регулируемые источники питания системной платы формируют напряжения питания процессора, чипсета, памяти и других компонентов платы. И если эти напряжения соответствуют заданным номиналам, то формируется сигнал готовности и этих источников питания, что и разрешает формирование сигнала системного сброса (RESET), по которому все схемы компьютера устанавливаются в определенное исходное состояние. По окончании сигнала RESET процессор начинает выборку и выполнение команд, и последовательно выполняет три группы программ: - программ POST (Power-On-Self-Test); -программ выполняющих функцию загрузки операционной системы: "Начальный загрузчик", IPL-1, IPL-2 (Initial Programm Loading) и др.; - программ операционной системы и ее оболочек. ... ...

Процессор - основной компонент любого компьютера (ликбез).

Статья добавлена: 15.09.2022 Категория: Статьи

Процессор - основной компонент любого компьютера (ликбез). Принцип программного управления является определяющим в компьютерной технике. Этот принцип определяет способ получения полезного эффекта от компьютеров: человек, используя свой интеллект, один раз "пишет" программу для компьютера, а затем эту программу можно выполнять на компьютере произвольное число раз, с одной и той же точностью исполнения, как и в первый раз. Основой любого компьютера является процессор (микропроцессор). В некоторых компьютерах используют несколько микропроцессоров (в суперкомпьютерах может быть несколько тысяч микропроцессоров). Современные технологии позволяют размещать в одном кристалле сотни процессоров (ядер), такие кристаллы обычно называют многоядерными процессорами. Вопрос стабильности и надежности функционирования микропроцессорных систем является самым важным для большинства областей применения компьютерной техники. Процессор является единственным активным компонентом компьютера, после включения электропитания он самостоятельно начинает выполнять созданную для него программу, которая представляет собой последовательность команд (инструкций) процессору. "Главной функцией" любого микропроцессора является выполнение набора команд, определенных для него разработчиками данного микропроцессора. Любой микропроцессор (МП) предназначен и для выполнения ряда аппаратных функций, обеспечивающих эффективное и надежное выполнение этих команд. Программы и данные доступны для процессора только в том случае, если они находятся в оперативной памяти (динамической или ПЗУ). Командами человек (программист) указывает микропроцессору последовательность действий, реализующих задачу, решаемую программистом на персональном компьютере. Программа, состоящая из команд процессора, должна находиться в оперативной памяти (динамической или ПЗУ), но так как размер оперативной памяти ограничен, основной объем программ и данных в виде файлов хранится во "внешней памяти" т. е. на "жестких" магнитных дисках и других носителях информации. Процессор для выполнения служебных или прикладных программ, находящихся, например, на дисках, осуществляет (с помощью других программ) сначала загрузку этих программ с диска в динамическую память, и только после этого "программы с дисков" становятся доступными для микропроцессора. Все компоненты компьютера (устройства ввода-вывода, устройства внешней памяти и т.д.) объединяются в единую систему с помощью системного интерфейса, который является общей информационной магистралью компьютера, по которой происходит обмен информацией между процессором, памятью и периферийными устройствами. Операции обмена на системном интерфейсе, как правило, инициирует микропроцессор (за исключением обмена по прямому доступу в память). Внешние устройства и их контроллеры - после начального «сброса» системы по сигналу RESET, устанавливаются в исходное начальное состояние и ждут команду (получив команду будут ее исполнять). Некоторые «интеллектуальные» контроллеры устройств (например HDD) выполняют функцию самодиагностики и затем ждут команду (получив команду будут ее исполнять). Ячейки оперативной памяти (DRAM или ПЗУ BIOS) - после начального «сброса» системы по сигналу RESET, готовы к выполнению операций чтения и записи. Системная шина - после начального «сброса» системы по сигналу RESET, обеспечивает процессору (и устройствам прямого доступа) возможность выполнения операций чтения и записи в регистры контроллеров, в регистры чипсета, микросхем и в ячейки оперативной памяти. ... ...

Симисторы. Фотосимисторы. Triac (силовые компоненты в цепях переменного тока).

Статья добавлена: 15.09.2022 Категория: Статьи

Симисторы. Фотосимисторы. Triac (силовые компоненты в цепях переменного тока). В копировальных аппаратах, лазерных принтерах, современных многофункциональных устройствах необходимо по сигналам микроконтроллера управлять включением-выключением двигателей, ламп сканирующих устройств, мощных ламп и термоэлементов узлов фиксации изображения на бумаге. При этом необходимо переключать достаточно мощные электрические токи сети ~ 220В. Раньше для этих целей использовали электромеханические реле, которые имеют ряд существенных недостатков и недостаточную надежность, а теперь полупроводниковые компоненты окончательно вытеснили из современных устройств традиционные электромеханические компоненты. Симистор. Симистор - это симметричный тиристор, который предназначен для коммутации в цепях переменного тока. Он может использоваться для создания реверсивных выпрямителей или регуляторов переменного тока. Структура симметричного тиристора приведена на рис. 1, а, а его схематическое обозначение на рис. 1,б. Фотосимисторы. Фотосимисторы - это симисторы с фотоэлектронным управлением, в которых управляющий электрод заменен инфракрасным светодиодом и фотоприемником со схемой управления. Основным достоинством таких приборов является гальваническая развязка цепи управления от силовой цепи. В качестве примера на рис. 3, а показана структурная схема фотосимистора, выпускаемого фирмой "Сименс" под названием СИТАК, а его условное схематическое изображение приведено на рис. 3, б. Triac. Ряд фирм в качестве основы для построения полупроводниковых переключателей используют структуру Triac (встречно включенные тиристоры). Эти приборы имеют высокое значение запирающего напряжения, и способны выдерживать импульсный ток, возникающий при переключении индуктивных нагрузок, и переходных процессах в цепях питания устройств. В закрытом состоянии переключатели на структурах Triac выдерживают напряжение до +/-700 В и выше (пиковые значения напряжения могут достигать значения 1100 В). Управляющий ток приборов составляет 10 и 20 мА, что позволяет подключать их входы непосредственно к выходу микроконтроллера. Так, группой компаний STMicroelectronics разработано семейство электронных переключателей ACST4 для цепей переменного тока. Приборы этого семейства разработаны для управления переключением токов, значение которых не превышает 4 А, они рассчитаны на подключение индуктивной нагрузки и не требуют дополнительных согласующих элементов. Типовая схема включения приборов ACST4 показана на рис. 5, а корпуса приборов показаны на рис. 6. Основные электрические параметры приборов приведены в табл. 1. ... ...

Префиксы, обозначающие объём информации в компьютерной технике.

Статья добавлена: 14.09.2022 Категория: Статьи

Префиксы, обозначающие объём информации в компьютерной технике. Все специалисты в области компьютерной техники знакомы с такими терминами, как килобайт и мегабайт, терабайт и др.. Объем дисковой памяти компьютеров увеличивается быстрыми темпами, и иногда затруднение вызывают такие единицы измерения объема дисковой памяти, как петабайт, экзабайт, зетабайт. Технологии производства внешней памяти постоянно развиваются, объемы накопителей, выпускаемых различными производителями постоянно растут, в связи с этим нужно осваивать новые системы обозначений для дисковой памяти. Префиксы, используемые для обозначения объема информации в компьютерной технике по новой системе измерений, принятой еще в 2005 году американским институтом IEEE и Международным комитетом по мерам и весам CIPM приведены в справочных таблицах 1 и 2 (для префиксов выше exbi пока название не утверждено).

Регулируемые DC/DC источники питания постоянного тока.

Статья добавлена: 13.09.2022 Категория: Статьи

Регулируемые DC/DC источники питания постоянного тока. В персональных компьютерах часто используют регулируемые источники питания для некоторых важных компонентов системной платы. Это необходимо, например, для возможности установки на системной плате модулей памяти с различным напряжением их питания. Кроме того увеличение напряжения питания процессора и памяти, обычно используют и при разгоне, в качестве вспомогательной меры, которая может увеличить стабильность системы при разгоне. Обычно модули оперативной памяти питаются током, имеющим определенное стандартное напряжение, величина которого зависит от типа и технологии изготовления модулей. Например, модули SDRAM в обычных условиях должны были питаться током в 3,3 В, модули DDR – 2,5 В, модули DDR2 – 1,8 В, а модули DDR3 – 1,5 В. В последние годы были разработаны стандарты с еще более низким напряжением – DDR3L и DDR3U. Для модулей памяти, соответствующих первой спецификации, данная величина составляет 1,35 В, а для соответствующих второй – 1,25 В. Таким образом, хорошо заметна тенденция к уменьшению питающего напряжения в зависимости от усовершенствования технологии изготовления модулей памяти. Причину подобного явления легко понять, если учитывать, что снижение напряжения микросхем памяти позволяет уменьшить энергопотребление и тепловыделение памяти. Но далеко не все материнские платы персональных компьютеров позволяют пользователю менять рабочее напряжение оперативной памяти. DC/DC преобразователи питания постоянного тока применяются для изменения выходного напряжения как в большую, так и в меньшую сторону, относительно напряжения на входе. Изменения выходного напряжения DC/DC преобразователя осуществляется изменением напряжения на входе FB микросхемы DC/DC контроллера (например uP1513P рис. 1). На вход FB подается напряжение обратной связи. Этот вывод является инвертирующим входом усилителя ошибки. Резисторный делитель R10/R9 (от выхода источника Vout к GND) используется для установки напряжения регулирования, которое можно изменить за счет параллельного подключения резисторов к резистору R9 для изменения напряжения на входе FB. Кроме того, изменять напряжение на входе FB и тем самым изменять напряжение на выходе источника (Vout) можно дополнительно и за счет цифро-аналогового преобразователя (англ. digital to analog converter, сокр. DAC) - это электронное устройство предназначено для преобразования цифрового сигнала в аналоговый. Например, UP1811BMA8 — цифро-аналоговый преобразователь (рис. 2). ... ...

Стр. 1 из 203      1 2 3 4>> 203

Лицензия