Статья добавлена: 28.08.2017
Категория: Статьи
Проверка MOSFET-транзисторов предназначенных для работы в ключевом режиме
(изолированный затвор).
Самый многочисленный класс MOSFET-транзисторов (предназначенных для работы в ключевом режиме) не имеет p-n-переходов между электродами (изолированный затвор). При проверке этих компонентов из-за большого сопротивления диэлектрического слоя у затвора, если транзистор явно не пробит (а для выявления этого «прозвонка» все же не помешает), убедиться в его работоспособности не удастся так как измерительный прибор покажет бесконечно большое сопротивление. Для проверки таких транзисторов можно воспользоваться одним из приспособлений, показанных на рис. 1.
Статья добавлена: 28.08.2017
Категория: Статьи
Блок питания ЖК-монитора.
Наиболее ремонтопригодным и поэтому интересным в плане изучения, является блок питания ЖК-монитора (AC/DC адаптер или по-другому сетевой импульсный блок питания). Назначение его элементов и схемотехника более конкретны и легче в понимании. По статистике ремонта неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Практические знания по принципам построения и работы блоков питания, его элементной базы и схемотехники будут особенно полезны и востребованы в практике ремонта подавляющего большинства электронных устройств и различной радиоаппаратуры.
AC/DC адаптер служит для преобразования переменного напряжения сети 220В в постоянное напряжение небольшой величины (обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт). Инвертор DC/AC преобразует полученное постоянное напряжение (DC) в переменное (AC) величиной около 600 - 700 В и частотой около 50 кГц, которое подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.
Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров, например, в блоке питания ЖК монитора Acer AL1716 (рис. 1) применена микросхема TOP244Y (в документации на микросхему TOP244Y можно найти типовые примеры принципиальных схем блоков питания, что можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы). На рис. 1 и рис. 2 рассмотрены два примера принципиальных схем импульсных блоков питания на базе микросхем серии TOP242 - 249.
Статья добавлена: 28.08.2017
Категория: Статьи
Микроконтроллер второго уровня.
Обычно микроконтроллер (рис. 1) является однокристальным устройством, имеющим в своем составе процессор, ПЗУ, ОЗУ, тактовый генератор, счетчики, таймеры, цифровые порты, аналоговые порты, АЦП. Управляющая программа находится внутри контроллера. Частота тактового генератора задается внешним кварцевым резонатором. Микроконтроллер формирует сигналы для управления всеми двигателями, источниками высоких напряжений, считывает состояния всех датчиков.
Связь микроконтроллера с блоком обработки данных (форматером) осуществляется через
интерфейсный разъем. Таким образом, микроконтроллер является специализированной микросхемой. Назначение контактов одного из микроконтроллеров (см. рис. 2 табл. 1).
Статья добавлена: 28.08.2017
Категория: Статьи
Преимущества трехфазной трехпроводной электрической сети для питания офисной техники.
Трехфазная трехпроводная электрическая сеть предоставляет энергетикам огромные преимущества, от которых очень трудно отказаться и в обозримом будущем специалисты не видят ей реальной альтернативы. Трехфазная трехпроводная сеть создавалась для трехфазных нагрузок, в этом случае токи, потребляемые в каждой из фаз, одинаковы и все три фазных напряжения также одинаковы. Но если в трехфазную сеть включены однофазные нагрузки (копиры, принтеры, лампы, компьютеры и т. д.), сопротивления нагрузки в разных фазах могут оказаться неодинаковыми. Фазные напряжения в трехфазной сети в этом случае также станут разными. Если две фазы мало нагружены, а третья сильно, то напряжение в сильно нагруженной фазе будет ниже номинального (220В), а напряжение в недогруженных фазах будет больше номинального. Такое явление обычно называют перекосом фаз. Легко понять, что в перегруженной фазе из-за низкого напряжения оборудование может не работать, а в недогруженных фазах из-за перенапряжения оборудование может выходить из строя.
Для того чтобы выровнять напряжения в трехфазной сети, в схему был введен еще один провод - нейтральный ("нейтраль"). Поэтому нейтральному проводу течет ток, компенсирующий разность токов в отдельных фазах, и благодаря этому напряжения в разных фазах выравниваются. Таким образом, изобретение Доливо-Добровольского доработали и получили четырехпроводную трехфазную электрическую сеть (рис. 1).
Статья добавлена: 28.08.2017
Категория: Статьи
SSD-диски.
В SSD дополнительно используются микросхемы DDR DRAM кеш-памяти. Это связано со спецификой работы и возросшей в несколько раз скоростью обмена данными между контроллером и интерфейсом. SSD-контроллер твердотельного диска (см. рис. 1) обеспечивает выполнение операций чтения/записи, и управление структурой размещения данных. Основываясь на матрице размещения блоков, в какие ячейки уже проводилась запись, а в какие еще нет, контроллер должен оптимизировать скорость записи и обеспечить максимально длительный срок службы SSD-диска. Вследствие особенностей построения NAND-памяти, работать с ее каждой ячейкой отдельно нельзя. Ячейки объединены в страницы объемом по 4 Кбайта, и записать информацию можно, только полностью заняв страницу. Стирать данные можно по блокам, которые равны 512 Кбайт. Все эти ограничения накладывают определенные обязанности на правильный интеллектуальный алгоритм работы контроллера. Поэтому, правильно настроенные и оптимизированные алгоритмы контролера могут существенно повысить производительность и долговечность работы SSD-диска. В контроллер входят следующие основные элементы:
- Processor – как правило, 16-ти или 32-х разрядный микроконтроллер. Выполняет инструкции микропрограммы, отвечает за перемешивание и выравнивание данных на Flash, диагностику SMART, кеширование и безопасность.
- Error Correction (ECC) – блок контроля и коррекции ошибок ECC;
- Flash Controller – включает адресацию, шину данных и контроль управления микросхемами Flash памяти;
- DRAM Controller - адресация, шина данных и управление DDR/DDR2/SDRAM кэш памятью;
- I/O interface – отвечает за интерфейс передачи данных на внешние интерфейсы SATA, USB или SAS;
- Controller Memory – состоит из ROM памяти и буфера. Память используется процессором для выполнения микропрограммы и как буфер для временного хранения данных. При отсутствии внешней микросхемы RAM памяти выступает в роли единственного буфера данных SSD.
Статья добавлена: 28.08.2017
Категория: Статьи
Интерфейс SAS.
Интерфейс SAS или Serial Attached SCSI обеспечивает подключение по физическому интерфейсу, аналогичному SATA, устройств, управляемых набором команд SCSI. Обладая обратной совместимостью с SATA, он даёт возможность подключать по этому интерфейсу любые устройства, управляемые набором команд SCSI - не только жёсткие диски, но и сканеры, принтеры и др. По сравнению с SATA, SAS обеспечивает более развитую топологию, позволяя осуществлять параллельное подключение одного устройства по двум или более каналам. Также поддерживаются расширители шины, позволяющие подключить несколько SAS устройств к одному порту.
Протокол SAS разработан и поддерживается комитетом T10. SAS был разработан для обмена данными с такими устройствами, как жёсткие диски, накопители на оптических дисках и им подобные. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями, совместим с интерфейсом SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Команды (рис. 1), посылаемые в устройство SCSI представляют собой последовательность байт определенной структуры (блоки дескрипторов команд).
Статья добавлена: 28.08.2017
Категория: Статьи
Нейтрализация защиты «интеллектуальных» картриджей.
Существуют методы и технологии, позволяющие обходить «защиту» картриджей на основе чипов (большей частью это относится к линейке HP). Большинство производителей стараются скрыть свои интеллектуальные чипы, исключив возможность их замены, но эти меры практически лишь слегка усложнили процесс замены чипов и заправки картриджей (и это отразилось и на стоимости таких восстановительных работ). Smart-платы в основном импортируют из США и Китая, крупные поставщики расходных материалов (достаточно качественных), осознав реальную выгоду нового направления, активно развивают этот бизнес. Сейчас картриджи для лазерных принтеров (без чипов защиты) могут заправляться даже в домашних условиях, но обход защиты в «интеллектуальных картриджах» на основе специальных чипов для обычных пользователей практически не возможен (это под силу только специалистам сервисных центров, у которых есть необходимое для этого технологическое оборудование, соответствующий опыт и техническая документация).
Статья добавлена: 28.08.2017
Категория: Статьи
Операционные усилители в копирах и принтерах.
Операционным усилителем (ОУ) называют усилитель напряжения, предназначенный для выполнения различных операций с аналоговыми сигналами: их усиление или ослабление, сложение или вычитание, интегрирование или дифференцирование, логарифмирование или потенцирование, преобразование их формы и др. Все эти операции ОУ выполняет с помощью цепей положительной и отрицательной обратной связи, в состав которых могут входить сопротивления, емкости и индуктивности, диоды, стабилитроны, транзисторы и некоторые другие электронные элементы. Поскольку все операции, выполняемые при помощи ОУ, могут иметь нормированную погрешность, то к его характеристикам предъявляются определенные требования.
Требования эти в основном сводятся к тому, чтобы ОУ как можно ближе соответствовал идеальному источнику напряжения, управляемому напряжением с бесконечно большим коэффициентом усиления. А это значит, что входное сопротивление ОУ должно быть равно бесконечности, а следовательно, входной ток должен быть равен нулю. Выходное сопротивление должно быть равно нулю, а следовательно, нагрузка не должна влиять на выходное напряжение. Частотный диапазон усиливаемых сигналов должен простираться от постоянного напряжения до очень высокой частоты. Поскольку коэффициент усиления ОУ очень велик, то при конечном значении выходного напряжения напряжение на его входе должно быть близким к нулю. Входная цепь ОУ обычно выполняется по дифференциальной схеме, а это значит, что входные сигналы можно подавать на любой из двух входов, один из которых изменяет полярность выходного напряжения и поэтому называется инвертирующим, а другой не изменяет полярности выходного напряжения и называется — неинвертирующим. Условное схематическое обозначение дифференциального операционного усилителя приведено на рис. 1, а. Инвертирующий вход можно отмечать кружочком или писать около него знак минус (-). Неинвертирующий вход или совсем не отмечается, или около него пишется знак плюс (+). Два вывода ОУ используются для подачи на него напряжения питания +ЕП и -ЕП Положительное и отрицательное напряжение питания обычно имеют одно и то же значение, а их общий вывод одновременно является общим выводом для входных и выходного сигналов (в дальнейшем выводы питания изображаться не будут). Если один из двух входов ОУ соединить с общим выводом, то можно получить два ОУ с одним входом, один из которых будет инвертирующим (рис. 1, б), а другой — неинвертирующим (рис. 1, в). Разностное напряжение (Uвх1 –Uвх2) = Uдиф — называют дифференциальным входным сигналом. По сути дела, это напряжение приложено между инвертирующим и не инвертирующим входами ОУ.
Статья добавлена: 28.08.2017
Категория: Статьи
Интерфейс DVI. DVI (Digital Visual Interface) продвигался группой компаний, известной под именем DDWG (в нее входят такие гиганты, как Intel, IBM, NEC, Hewlett-Packard и Compaq, Silicon Image, а позже в этот альянс влились и компании, продвигавшие ранее стандарт DFP. Интерфейс поддерживает протокол TMDS, однако вместо одного применяет двухканальное соединение, поэтому максимальное разрешение при использовании DVI может достигать 2048x1536х60 Гц и даже выше.
В спецификации DVI выделяют разъемы DVI-D (рис. 1,б) — для подключения цифровых мониторов, а также более универсальный DVI- I (рис. 4, а). Чаще всего используется последний, в котором есть три ряда по восемь контактов, а также отдельно вынесенная группа из четырех контактов, разделенных контактом «земля». Именно последняя, а также несколько контактов из группы цифровых передают аналоговый сигнал.
С помощью специального переходника к разъему DVI-I всегда можно подключить монитор с интерфейсом VGA. Предусмотрена также и совместимость со стандартами P&D и DFP, что является немаловажным для продвижения DVI-I. Ведь именно условие несовместимости мешало производителям видеокарт выпускать последние с цифровым интерфейсом, в то время как большинство мониторов были аналоговыми. А производители ЖК-мониторов, в свою очередь, не могли выпускать дисплеи с цифровым интерфейсом при отсутствии на рынке соответствующих графических адаптеров.
Статья добавлена: 13.11.2019
Категория: Статьи
Негативные воздействия со стороны питающей аппаратуру сети переменного тока.
Достаточно распространенной причиной отказов электронных схем устройств оргтехники и компьютерной техники являются негативные воздействия со стороны питающей аппаратуру сети переменного тока. К сожалению, пока эффективно воздействовать на поставщиков электроэнергии мы не можем, но принять ряд мер, позволяющих устранить отказы аппаратуры из-за негативных воздействий со стороны сети переменного тока, мы можем.
Надежность работы радиоэлектронной аппаратуры во многом определяется качеством питающих электрических сетей, в которых могут иметь место перенапряжения длительностью от сотен миллисекунд до нескольких секунд, провалы напряжения длительностью до десятков миллисекунд, пропадания (отсутствие напряжения более одно¬го периода) и так далее. Устройства оргтехники и компьютерной техники, питание которых осуществляется от сети переменного тока, подвергаются всевозможным негативным воздействиям со стороны некачественной питающей сети.
Статья добавлена: 25.05.2020
Категория: Статьи
Системная шина QPI для серверов на многоядерных процессорах Core iX.
Все компоненты, входящие в процессоры семейства Core iX, обычно разделены на два основных блока. В Intel их называют: «core» (ядро) и «uncore» (субъядро). Ядро (core) отвечает за выполнение традиционных функций, обычно связываемых с работой процессора. Это - вычислительные блоки, модуль предсказания ветвлений, регистры памяти и два типа кэшей L1 и L2. Субъядро ("uncore") охватывает компоненты, отвечающие за средства коммуникации с внешним миром. Сюда относятся контроллер памяти (memory controller), блок интерконнект QuickPath (QuickPath links), кэш 3-го уровня (L3 cache), средства управления энергопитанием (power management). Еще одним из элементов, относящимся к уровню uncore, стал и встроенный графический контроллер (графический процессор). Предложенное архитектурное деление осуществляет переход на новый принцип модельного деления серии выпускаемых процессоров. Отличительным признак серии будет использованное ядро (core). А вот различная комплектация уровня субъядро ("uncore") позволит выделить специализированные типы процессоров для отдельных применений: домашние, настольные для бизнес-решений, серверные. Понятно, что серверная версия будет отличаться расширенным размером кэша L3 и добавлением каналов QPI (QuickPath Interconnect).
Итак, кристалл процессора Core i7 (Nehalem) с другими компонентами системы пока связывают два архитектурных блока (рис. 1):
- QuickPath Interconnect (QPI) – связь с чипсетом (и другим процессором в многопроцессорных вариантах);
- Integrated Memory Controller (IMC) – связь с модулями памяти.
Основное достоинство нового интерфейса QPI – это сочетание высокой пропускной способности - до 15 Гбит/с и низкого энергопотребления (не более 5,0 мВт на каждый гигабит в секунду при пропускной способности 15 Гбит/с). При скорости передачи данных 5 Гбит/с новый интерфейс Intel обладает уровнем энергопотребления не более 2,7 мВт на каждый гигабит в секунду. Эти результаты сегодня являются рекордными с точки зрения эффективности работы современных приёмников данных Теоретически, Intel может повысить пропускную способность существующих интерфейсов в три раза, довольствуясь только 25% уровня энергопотребления нынешних интерфейсов.
Статья добавлена: 28.08.2017
Категория: Статьи
Обмен информацией по шине QPI.
Обмен информацией по шине QPI осуществляется сдвоенными передачами – т.е. на удвоенной тактовой частоте. В табл. 1 для сравнения приведены скорости обмена для различных технологий.
Логические операции в физическом слое ответственны за сброс, инициализация и адаптацию. Физический уровень разработан с очень низким ожидаемым процентом ошибок в данных из-за случайного «шума» и «помех» в системе. Ошибки, которые иногда могут быть обнаружены будут исправлены через функции, заложенные на уровне связи. Чтобы частота появления ошибочных битов не превышала заданное предельное значение, физический слой выполняет периодическую рекалибровку. Аппаратно встроенный тест (Intel® IBIST) обеспечивают механизм для проверки всей шины на полной эксплуатационной скорости без использования внешнего диагностического оборудования.