Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 33 из 213      1<< 30 31 32 33 34 35 36>> 213

UEFI- ПЗУ. Микросхемы SpiFlash памяти с интерфейсами SPI, Dual-SPI, Quad-SPI, QPI-SPI.

Статья добавлена: 19.08.2020 Категория: Статьи

UEFI- ПЗУ. Микросхемы SpiFlash памяти с интерфейсами SPI, Dual-SPI, Quad-SPI, QPI-SPI. Существенным недостатком использования ПЗУ была и остается их низкая производительность. Ее помогает обойти только использование «теневой памяти» (Shadow RAM) в которую для ускорения доступа копируется BIOS (а теперь и UEFI). Поэтому появилась идея попытаться выполнить старт персональной платформы, полностью отказавшись от использования оперативной памяти. Возможности современных реализаций флеш-памяти рассмотрены далее на примере чипа W25Q64FV, используемого для хранения кода UEFI BIOS. Компания Winbond, разработавшая этот чип, позиционирует его как устройство, способное выполнять программы непосредственно из исходного носителя. Данная технология получила название Execute In Place (XIP) и по идее должна заменить режим Shadow RAM.

Изобретатель технологии для лазерных принтеров и копиров.

Статья добавлена: 18.08.2020 Категория: Статьи

Изобретатель технологии для лазерных принтеров и копиров. Cухой электростатический фото-копировальный процесс был изобретен и запатентован в 1935 году (Честер Ф. Карлсон (1906-1968)), когда все остальные способы тиражирования копий были настолько несовершенны, что делопроизводство практически полностью велось методом перепечатки документов через копирку. Такое положение, когда деятельность, связанная с производством многочисленных копий, превращалась в тяжелый монотонный и грязный процесс, и стимулировало первооткрывателя сухого электростатического переноса Честера Ф. Карлсона взяться за создание инженерной системы, которая могла бы производить копии быстро, дешево, качественно, просто. Честер Карлсон получил в 1930 году степень бакалавра физики в Калифорнийском технологическом институте. Проработав незначительное время в Bell Telephone Company, он устроился в патентный отдел нью-йоркской электротехнической компании P.R.Mallory Company, где и столкнулся впервые с проблемой изготовления копий. Карлсон понял, насколько велика потребность в простом и дешевом средстве производства высококачественных копий, и решил посвятить решению этой проблемы всё свое свободное время. Начиная с 1934 года он ознакомился практически со всеми материалами того времени, так или иначе относившимися к фотографическому и печатному процессам, и его внимание привлекли приводившиеся в одной из публикаций сведения о том, что электропроводимость определенных материалов меняется под воздействием света. Этот принцип он и решил положить в основу своей разработки. Лишь после долгих экспериментов, занявших четыре года, Карлсон наконец добился своего и сделал первую в истории сухую фотокопию. Через год он получил первый из многочисленных патентов на свое изобретение, но до создания копировального аппарата массового применения было еще далеко. Еще четыре года Карлсон потратил на тщетные попытки заинтересовать своим изобретением производителей оборудования. То, что было очевидным для рядового клерка, в глазах руководителей компаний выглядело сомнительным. Более двадцати фирм, в том числе IBM, Remington и General Electric, ответили на его предложение отказом. Наконец ему удалось уговорить некоммерческую организацию Bettell Memorial Institute, занимавшуюся научными изысканиями, субсидировать его дальнейшие работы над усовершенствованием нового процесса. В 1947 году фирма Haloid Company, обратила внимание на работы Карлсона и перекупила права на использование его патентов. Изобретенному Карлсоном процессу сухого электростатического переноса изображения дали выразительное торговое название - термин ксерография, который образован от двух греческих корней: xeros (сухой) и wgraphein (писать). Термин дал впоследствии имя и самой компании, которая сначала стала называться Haloid Xerox, затем Xerox Corporation и наконец, сравнительно недавно, The Document Company Xerox.

Развитие интерфейса LVDS (LDI).

Статья добавлена: 18.08.2020 Категория: Статьи

Развитие интерфейса LVDS (LDI). Для увеличения пропускной способности интерфейса LVDS, компания разработчик (National Semiconductor) расширила интерфейс LVDS и удвоила количество дифференциальных пар, используемых для передачи данных, т.е. теперь их стало восемь (см. рис. 1). Это расширение получило название LDI (LVDS Display Interface). В принципе, интерфейс LVDS может использоваться для передачи любых цифровых данных, о чем говорит широкое применение LVDS в телекоммуникационной отрасли. Однако, все-таки, наибольшее распространение он получил именно как дисплейный интерфейс. Кроме того, в спецификации LDI улучшен баланс линий по постоянному току за счет введения избыточного кодирования, а стробирование производится каждым фронтом такового сигнала (что позволяет вдвое повысить объем передаваемых данных без увеличения тактовой частоты). LDI поддерживает скорость передачи данных до 772 МГц. В документации данная спецификация встречается также и под наименованием OpenLDFM, а у отечественных специалистов отклик в душе нашел термин "двухканальный LVDS".

Идеология ремонта компьютерной техники. Информация для размышления.

Статья добавлена: 17.08.2020 Категория: Статьи

Идеология ремонта компьютерной техники. Информация для размышления. Замена микросхемы, устранение короткого замыкания, восстановление разрыва проводника, восстановление испорченной информации в ПЗУ BIOS или на поверхности магнитного диска накопителя являются самой простой частью работы по устранению неисправности компьютера. Главная проблема при ремонте компьютера – это поиск причины и локализация неисправности, так как для этого требуются достаточно глубокие знания и понимание процессов происходящих в процессе работы компьютера. Компьютерная индустрия и компьютерные сетевые технологии стали крупнейшим бизнесом в мире, но тем не менее рынок персональных компьютеров продолжает постоянно расширяться. Значительно выросла мощность компьютерных систем, появились многоядерные процессоры, значительно расширились функции микросхем чипсетов, возросла надежность компонентов компьютера и всей системы. Несмотря на все достоинства новых компьютеров, их ремонт оказался намного сложнее, чем ремонт компьютеров предыдущих поколений. Появилось много новых типов корпусов микросхем, в том числе рассчитанных на поверхностный монтаж, применяются новые сверхбыстродействующие процессоры. Появилось множество новых чипсетов, с очень высокой степенью интеграции схем в кристалле, повысилась частота синхронизации, возросла емкость и быстродействие памяти. Появилось множество разного назначения и производительности интерфейсов и т. д. Конечно, во многих случаях для ремонта оборудования, будь оно новое или старое, инженеру не обязательно всегда подробно знать, как оно работает. Часто для выполнения ремонта не требуется досконального знания устройства, подробностей его функционирования, программирования и т. д., но несомненно, очень полезно знать о компьютерных системах как можно больше, и не менее важно хорошо разбираться в цифровой и аналоговой электронике. Цифровая электроника совсем не похожа на аналоговую электронику, отказы цифровых схем порождают новый и необычный круг проблем. Существуют два основных варианта подхода к ремонту компьютера. Один из них требует, чтобы Вы понимали общие принципы работы компьютера, которых обычно достаточно для анализа общих симптомов и нахождения неисправной секции (блока) компьютера. Устранение неисправности на этом уровне обычно происходит заменой неисправного блока или крупного узла компьютера, что приводит к достаточно большим материальным и временным затратам (надо найти нужный для замены блок, оплатить через банк, дождаться когда же его привезут). Ремонт второго типа предполагает наличие у специалиста глубоких теоретических знаний и практических навыков, специалист должен разбираться в схемотехнике компьютера, знать принципы его построения и работы, владеть методиками анализа и поиска причин неисправности. Нужно уметь грамотно пользоваться контрольно-измерительными приборами, логическими пробниками, вольтметром и осциллографом. Иначе говоря, знаний и умений должно быть достаточно для анализа электронных схем на уровне электрических сигналов, что и позволит локализовать неисправность на уровне элементарных компонентов электронных плат и узлов компьютера. Устранение неисправности на этом уровне ремонта обходится гораздо дешевле (в 5-20 раз) по сравнению с ремонтом первого типа, и занимает значительно меньше времени (найти нужную микросхему, конденсатор, резистор или диод гораздо проще, оплата в виду небольшой цены может быть произведена наличными деньгами в магазине или сервисном центре).

Обращаемся с ноутбуком бережно и аккуратно.

Статья добавлена: 17.08.2020 Категория: Статьи

Обращаемся с ноутбуком бережно и аккуратно. Подавляющее большинство наиболее часто встречающихся проблем, с которыми пользователи ноутбуков обращаются в сервисный центр, происходят по вине пользователя, поэтому надо сделать из данной статьи правильные выводы и обращаться с ноутбуком как можно более бережно и аккуратно. Ноутбуки совершенствуются, а пользователи — нет. Причины, типичные проблемы и неисправности остаются, к сожалению, прежними. Итак, рассмотрим далее своего рода «хит-парад» типичных проблем и неисправностей, с которыми владельцы ноутбуков приходят в сервисный центр. На первом месте, причём со значительным отрывом от всех остальных поломок, находится довольно банальная неприятность – залитая жидкостью (чаем, кофе, пивом, коньяком и так далее) клавиатура. Мораль проста – ни в коем случае не ставьте чашку/кружку/рюмку рядом с ноутбуком, иначе рано или поздно кто-нибудь (не обязательно вы), не рассчитав движение, опрокинет некстати подвернувшийся под руку сосуд, и обращения в сервис-центр не избежать. Второе место занимают неисправности клавиатуры (обычно отваливаются «шапки» клавиш). Это может быть следствием как излишних усилий, прилагаемых пользователем, так и не слишком качественных компонентов ноутбука. Так или иначе, обращатся с клавиатурой нужно по возможности аккуратно, а это позволит сэкономить время и деньги. На третьем месте – выход из строя блоков питания и повреждения экрана ноутбуков. Выход из строя блока питания - тоже довольно распространённая проблема, обращающихся в сервисный центр по этой причине достаточно много. К сожалению, от пользователя здесь мало что зависит – вина практически полностью лежит на производителях блоков питания. Разбить экран у ноутбука, может показаться, что сделать это достаточно сложно, но как показывает практика, возможны множество ситуаций, в которых повредить экран у ноутбука легче лёгкого. Например: положили ручку на клавиатуру и закрыли крышку; уронили, случайно наступили ногой или сели на край стола, а под бумагами оказался ноутбук и т. д. Прочие популярные проблемы. В продолжение «хит-парада» дефектов отметим остальные, наиболее часто встречающиеся проблемы, возникающие в процессе эксплуатации портативных компьютеров:

Особенности функционирования HDD (ликбез).

Статья добавлена: 17.08.2020 Категория: Статьи

Особенности функционирования HDD (ликбез). Современный винчестер является сложным устройством со встроенными микропроцессорами (микроконтроллерами), Контроллер винчестера, расположенный на плате электроники накопителя, отрабатывает команды, поступающие в его программно-доступные регистры из внешнего интерфейса. При подаче питания и по сигналу аппаратного сброса контроллер выполняет процедуру самодиагностирования, сначала проверяя собственное оборудование (ОЗУ, ПЗУ, регистры), а затем и остальные блоки. Далее инициируется запуск шпиндельного двигателя, и когда он наберет номинальные обороты, дается управление на вывод головок из зоны парковки и начинается управление их перемещением с помощью сервосистемы. Микроконтроллер загружает со служебных треков диска необходимую ему управляющую информацию. С диска считывается таблица трансляции секторов, списки дефектных блоков, паспорт диска и часть программ микроконтроллера. Для повышения надежности служебная информация обычно записывается с несколькими копиями, поскольку невозможность ее считывания приведет к потере работоспособности устройства. Служебная информация может храниться и в энергонезависимой электронной памяти EEPROM или флэш-памяти. На основании служебной информации контроллер конфигурируется под характеристики конкретного гермоблока жесткого диска, с которым он работает (определяет списки рабочих головок, число цилиндров, число секторов в треках каждой зоны и т, п.). Обычно один и тот же тип блока электроники может использоваться для ряда моделей винчестеров, отличающихся числом рабочих поверхностей, причем физически у них в «пакете» может быть даже одно число дисков, но не все их поверхности работоспособны и используются. Обычно у таких накопителей может совпадать и «микропрограммное обеспечение» записанное в ПЗУ или флэш-памяти. После успешного завершения конфигурирования, подсистема жесткого диска становится готова к исполнению команд, поступающих по внешнему интерфейсу. Теперь винчестер способен предъявить паспорт диска (набор данных, описывающих все внешне доступные возможности накопителя). Команды, поступающие в контроллер диска через интерфейс, включают операции чтения, записи, верификации секторов, поиска и некоторые вспомогательные операции. Все эти команды работают с блоками данных адресуемых секторов, что подразумевает наличие низкоуровнего формата диска. Так как во многих современных дисках используется зонная запись (с различным числом секторов на треке), то при получении команды внутренний микроконтроллер выполняет трансляцию внешнего адреса запроса, поступившего по интерфейсу, в адреса реальных секторов, расположенных на реальных поверхностях носителя. Трансляция выполняется по таблицам, загруженным в ОЗУ микроконтроллера, учитывающим текущую внешнюю (логическую) геометрию диска, размеры зон, а также переназначение физических секторов, обеспечивающее обход дефектных участков поверхностей. Со временем, хранение данных на магнитном носителе всегда сопровождается появлением «сбоев», причин у которых может быть множество.

Меры предосторожности при модернизации компьютера.

Статья добавлена: 17.08.2020 Категория: Статьи

Меры предосторожности при модернизации компьютера. При модернизации компьютера, нужно обязательно подсчитать, потребляемую его отдельными узлами мощность, а затем определить и требуемую мощность блока питания (только после этого будет ясно, нужно ли заменять блок питания на более мощный). Довольно сложно определить этот параметр, например, для устройств с напряжением питания +5 В, включая системную плату и платы адаптеров. Мощность, потребляемая системной платой, зависит от нескольких факторов и будет лучше, если вы как можно точнее вычислите значение тока для вашей конкретной платы. Если не удается найти точные данные для плат расширения, то нужно проявить разумный консерватизм и исходить из максимально возможной мощности потребления для плат адаптеров, допускаемой стандартом используемой шины. Обычно превышение допустимой мощности происходит при заполнении разъемов и установке дополнительных дисководов. Некоторые жесткие диски, CD-ROM, накопители на гибких дисках и другие устройства могут перегрузить блок питания компьютера. Необходимо обязательно проверить, достаточно ли мощности источника +12 В для питания всех дисководов. Особенно это относится к компьютерам с корпусом Tower, в котором предусмотрено много отсеков для накопителей. Проверьте также, не окажется ли перегруженным источник +5 В при установке всех адаптеров, особенно при использовании плат для шин PCI. С одной стороны, лучше перестраховаться, а с другой - имейте в виду, что большинство плат потребляет меньшую мощность, чем максимально допустимая стандартом шины. Часто блоки питания продолжают работать, но периодически отключаясь или подавая на свои разъемы нештатные значения напряжений. Компьютер при этом работает, но его поведение абсолютно непредсказуемо, а действительным виновником является перегруженный блок питания.

80-ядерный ARM-процессор Ampere Altra (7нм).

Статья добавлена: 13.08.2020 Категория: Статьи

80-ядерный ARM-процессор Ampere Altra (7нм). Cпециалисты прогнозируют, что платформа ARM составит конкуренцию x86 в дата-центрах, но этого пока не происходит. По итогам 2019 года там доминирует Intel с долей 95,5%, а у AMD — 4,5%. Калифорнийская компания Ampere недавно представила первый в отрасли 80-ядерный серверный ARM-процессор на 64-битной архитектуре Ampere Altra. Однако новый ARM-процессор в целочисленном бенчмарке SPECrate 2017 показывал более высокую производительность, чем самый быстрый 64-ядерный AMD EPYC или топовый 28-ядерный Xeon семейства Cascade Lake. Это была уже серьёзная заявка (хотя результаты бенчмарка немного «подкручены», как описано ниже). Главное преимущество ARM — энергоэффективность, с которой по определению не могли сравниться процессоры x86 из-за особенностей архитектуры. У 80-ядерного Ampere Altra показатель TDP составлял 45-210 Вт, тактовая частота — 3 ГГц. Специалисты Ampere считают, что один поток на ядро вместо двух способствует более высокой безопасности, поскольку такой дизайн лучше защищает отдельные ядра от атак по сторонним каналам типа Meltdown и Spectre. Процессор был предназначен для серверных приложений, таких как аналитика данных, искусственный интеллект, базы данных, хранилища, телекоммуникационные стеки, пограничные вычисления, веб-хостинг и облачные приложения. Специально для приложений машинного обучения на аппаратном уровне реализована поддержка форматов данных FP16 (числа половинной точности) и INT8 (однобайтное представление целого числа). Есть также аппаратное ускорение хэширования AES и SHA-256. Микросхемы производились на заводе TSMC по техпроцессу 7 нм. Первые образцы CPU уже отправлены потенциальным клиентам, а массовое производство планируется начать в середине 2020 года.

Память GDDR4, GDDR5, GDDR5X, GDDR6, и Wide I/O, HMC и HBM (ликбез).

Статья добавлена: 13.08.2020 Категория: Статьи

GDDR4 используется на частотах от 1 ГГц DDR (2 ГГц) и вплоть до 2,2-2,4 ГГц DDR (4-4,8 ГГц), что обеспечивает очень высокую пропускную способность, особенно в секторе графических решений. GDDR4 ориентирована на рынок графических решений, GDDR4 обладает гораздо большим энергопотреблением. Компания Qimonda приступила к выпуску памяти стандарта GDDR-5 с увеличенной в два раза пропускной способностью, с новыми технологиями энергосбережения, а также алгоритмом выявления ошибок (память типа GDDR-5 в три раза быстрее нынешних микросхем GDDR-3, работающих на частоте 1600 МГц DDR). Память типа GDDR-5 использует две тактовых частоты для разных операций, что позволяет свести к минимуму задержки на операциях записи и чтения. Чипы памяти имеют плотность 512 Мбит, они способны передавать до 24 гигабайт данных в секунду, и работать на частотах свыше 3.0 ГГц DDR при напряжении 1.5 В. Далее пошли поставки памяти GDDR5X, GDDR6 (предвыборка: GDDR5-8n; GDDR5X-16n; GDDR6-16n), и далее - Wide I/O, HMC и HBM (эти стандарты основываются на так называемой stacked DRAM — размещении чипов памяти слоями, с одновременным доступом к разным микросхемам, что расширяет шину памяти (например — 4096 линий), значительно повышая пропускную способность и немного снижая задержки.

API Vulkan (ликбез).

Статья добавлена: 13.08.2020 Категория: Статьи

API Vulkan (ликбез). API Vulkan - «новое поколение OpenGL» или просто «glNext», Vulkan - это графический и вычислительный API нового поколения, который обеспечивает высокопроизводительный кросс-платформенный доступ к современным графическим процессорам, используемым в самых разных устройствах от ПК и консолей до мобильных телефонов и встроенных платформ. Vulkan API изначально был известен как «новое поколение OpenGL» или просто «glNext», но после анонса компания отказалась от этих названий в пользу названия Vulkan. Спецификация Vulkan 1.1 уже была запущена 7 марта 2018 года, чтобы расширить основные функциональные возможности Vulkan с функциями, запрошенными разработчиками, такими как операции с подгруппами, а также интегрировать широкий спектр проверенных расширений от Vulkan 1.0. 2018 год для игровой индустрии положил начало внедрению трассировки лучей в реальном времени: многие крупные компании и разработчики активно трудятся над решением этой проблемы (в том числе и NVIDIA). Очередным шагом NVIDIA в этой области стала работа над расширением для API Vulkan, которое, по аналогии с RTX для DXR, позволит использовать в играх трассировку лучей. NVIDIA осуществила перенос своей технологии RTX в Vulkan через расширение VK_NV_raytracing, которое хорошо совместимо с этим открытым графическим API.

API - графический интерфейс прикладного программирования (ликбез).

Статья добавлена: 12.08.2020 Категория: Статьи

API - графический интерфейс прикладного программирования (ликбез). Графический интерфейс прикладного программирования (Application Programming Interface, API) был разработан для разработчиков игровых программ. Самые первые массовые ускорители использовали Glide — API для трёхмерной графики, разработанный 3dfx Interactive для видеокарт на основе собственных графических процессоров Voodoo Graphics, а затем уже появились API OpenCL, DirectX. На программном уровне видеопроцессор для своей организации вычислений (расчётов трёхмерной графики) использует тот или иной интерфейс прикладного программирования (API). DirectX (как и OpenGL) - это графический интерфейс прикладного программирования (API). До появления API каждый производитель графических процессоров использовал собственный механизм общения с играми, и разработчикам игр приходилось писать отдельный код для каждого графического процессора, который они хотели поддержать. Поэтому для каждой игры указывалось, какие именно видеокарты она поддерживает. Чтобы решить эту проблему, которая являлась серьезным тормозом для игровой индустрии, и был разработан API, что позволило устранить зависимость между игрой и конкретным графическим процессором. Графические процессоры поддерживали определенные версии API, а разработчики игр писали коды под определенную версию API. Существует два основных типа API: Microsoft DirectX и OpenGL. При этом нужно отметить, что большинство игр ориентировано именно на Microsoft DirectX. Стандарт DirectX включает API для звука, музыки, устройств ввода и т.д. За 3D-графику в DirectX отвечает API Direct3D, и когда говорят о видеокартах, то имеют в виду именно его (поэтому понятия DirectX и Direct3D взаимозаменяемы). Стандарт DirectX постоянно обновляется. Каждая версия DirectX поддерживает определенные версии шейдеров (программ обработки вершин (Vertex Shader) и пикселов (Pixel Shader). Эти версии шейдеров называются Shader Model.

Проблемы электропитания компьютерных систем и их решение.

Статья добавлена: 12.08.2020 Категория: Статьи

Проблемы электропитания компьютерных систем и их решение. Проблемы электропитания импортного оборудования компьютерных систем ощущается особенно остро так как обеспечение нормальным питанием рассматривается, естественно, с позиций того окружения, в котором работает пользователь зарубежный. Но в российских электросетях более высокое напряжение питания 220 В (колеблется в пределах 210 - 230 В), иная частота сети - 50 Гц против 60 Гц. Такое отличие частот может вызвать повышенную нагрузку на трансформаторы блоков питания. Большой проблемой является для нас небрежный, а часто и неквалифицированный монтаж сети. Только сравнительно недавно электропроводку стали выполнять трехжильным проводом, в котором кроме «нейтрали» и «фазы» присутствует еще и «земля» (куда эта земля будет подключена это отдельный вопрос). Доступность трехфазных электропроводок облегчает решение вопроса предельно допустимой нагрузки на сеть, но порождает ряд других проблем иного рода. Случается, что из-за низкой квалификации, самоуверенности и торопливости при монтаже, разные розетки в одной комнате подключаются к разным фазам, напряжение между которыми составляет 380 В. При небрежном заземлении, которое осуществляется порой в разных точках, могут возникнуть опасные ситуации, поэтому в наших условиях проблему энергоснабжения обычно приходится начинать не с выбора источника бесперебойного питания (ИБП), а с перепланировки силовой электросети. К серьезнейшим недостаткам нашей электросети следует отнести даже не сбои в питании, а импульсы и перенапряжение. Даже для современных устройств с автоматической настройкой на напряжение сети значительно повышенное питание может привести к выходу их из строя. В этой связи при выборе устройства ИБП необходимо поинтересоваться и тем, как оно справляется с повышенным напряжением и с высоковольтными импульсами. Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к повреждениям оборудования, и проблемы, вызывающие повреждение данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышенным, любое напряжение ниже 205 В - пониженным. Повышенное напряжение может привести к выходу из строя источников питания компьютеров и другого оборудования. Электромоторы перегреваются при пониженном напряжении. Для микрокомпьютеров обычно используют источники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению. Аномалия в электропитании, которая особенно опасна для компьютеров и электроники вообще - это импульс, известный также как кратковременное повышение, выброс или колебание напряжения. Импульс - это очень короткое повышение напряжения, причиной которого может служить удар молнии в силовую линию, включение определенного типа силовых устройств либо управление двигателем переменной скорости. Типичный импульс, величина которого может составлять от нескольких сотен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд. Отключение энергии - проблема, требующая наиболее пристального внимания. Не заметить полную потерю питания действительно довольно сложно. Кратковременное отключение энергии - длящееся лишь от полупериода до пары периодов волны - часто называют выпадением питания. Радиочастотная интерференция ведет к возникновению электрошума, который накладывается на предполагаемо чистую, синусоидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в питающую шину компьютера, компьютер может ошибочно интерпретировать его как данные. Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления.

Стр. 33 из 213      1<< 30 31 32 33 34 35 36>> 213

Лицензия