Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 51 из 213      1<< 48 49 50 51 52 53 54>> 213

Варианты реализации светодиодной подсветки.

Статья добавлена: 29.07.2019 Категория: Статьи

Варианты реализации светодиодной подсветки. Схемы светодиодной подсветки LCD-дисплеев уже давно являются одним из самых распространенных применений светодиодов. Драйверы для устройств с автономным питанием имеют, как правило, высокий КПД (более 90%). Они являются регулируемыми импульсными повышающими или повышающе-понижающими DC/DC-преобразователями. В DC/DC-преобразователях обычно применяется стабилизация выходного тока (то есть тока светодиодов), что обеспечивает стабильную яркость свечения светодиодов (гораздо реже для этих целей используется стабилизация напряжения на светодиодах). В качестве повышающе-понижающих DC/DC-преобразователей в драйверах также применяют также индуктивные преобразователи SEPIC-архитектуры (Single-ended primary-inductor converter — одновыводной первичный преобразователь на индуктивности), которые обеспечивают несколько больший выходной ток и КПД. Повышающие преобразователи нашли свое основное применение в устройствах с низковольтными источниками питания (они имеют высокий КПД и большой выходной ток при остальных средних показателях). Микросхема МР1529 - это один из мощных драйверов на DC-DC преобразователях от фирмы MPS. Микросхема МР1529 может управлять тремя цепями последовательно включенных белых сверхъярких светодиодов (напряжение питания микросхемы МР1529 составляет 2,7...5,5В, а выходное напряжение - 25В). Она имеет защиту от превышения выходного напряжения с порогом срабатывания 28 В, а также защиту от понижения входного напряжения с порогом срабатывания 2...2,6В и гистерезисом 210мВ. МР1529 имеет также температурную защиту (160°С) и изготавливается в корпусе QFN16 размером 4x4 мм. Назначение выводов МР1529 приведено в таблице 1, а типовая схема включения - на рис. 1.

DVD-диски многократной перезаписи трех различных форматов (ликбез).

Статья добавлена: 26.07.2019 Категория: Статьи

DVD-диски многократной перезаписи трех различных форматов (ликбез). Существуют три основных формата устройств с перезаписью: DVD-R/RW, зачастую называемый просто DVD-RW, DVD+R/RW, обычно обозначаемый DVD+RW, и DVD-RAM.

Методы защиты USB-интерфейсов от ESD.

Статья добавлена: 25.07.2019 Категория: Статьи

Методы защиты USB-интерфейсов от ESD. Метод защиты USB-устройств от статических разрядов достаточно прост и традиционен - использование специальных подавителей разрядов - супрессоров (Suppressor). В USB-устройствах можно встретить несколько типов супрессоров: 1. Комбинированные супрессоры диодного типа. 2. Комбинированные транзисторные TVS-супрессоры. 3. Дискретные супрессоры. Комбинированные супрессоры диодного типа. Подавители выбросов напряжения являются обычно полупроводниковыми приборами, у которых ВАХ аналогична стабилитрону. В условиях нормальной работы ограничители являются высокоимпедансной нагрузкой по отношению к защищаемой схеме и служат для защиты цепи. В идеальном случае, устройство выглядит как разомкнутая цепь с незначительным током утечки. Когда напряжение переходного процесса превышает рабочее напряжение цепи, импеданс ограничителя понижается, и ток переходного процесса начинает течь через ограничитель. Мощность, образовавшаяся при переходном процессе, рассеивается в пределах устройства и ограничивается максимально допустимой температурой перехода. Когда линейное напряжение достигает нормального уровня, ограничители автоматически возвращаются в высокоимпедансное состояние. Примером таких устройств является TVS-диод (рис. 1).

Алгоритм поиска неисправности в системных платах.

Статья добавлена: 22.07.2019 Категория: Статьи

Алгоритм поиска неисправности в системных платах. Действия при поиске неисправности сводятся к получению диагностической информации, ее анализу и планированию последующих действий, результатом которых является получение дополнительной диагностической информации. Используя эту информацию можно уточнить и скорректировать план следующего этапа работы. Последовательность этих действий должна вести к сужению области, в которой ведется поиск, и, в конечном счете, к обнаружению дефекта. Такой алгоритм действий позволяет на каждом витке поиска за счет анализа получать ответ на вопрос: а что делать дальше? И непрерывно, целенаправленно вести поиск до желаемого результата. Допустим, перед нами на рабочем столе находится исследуемая системная плата, и нам предстоит провести работу по поиску и устранению дефекта платы. Выделим наиболее важные шаги, позволяющие эффективно локализовать причину неисправности. 1. Получение информации до включения электропитания. Сначала выполним сбор информации путем осмотра системной платы с оценкой: - состояния каждого элемента по его внешнему виду; - условий эксплуатации системной платы (запыленность, наличие изменений геометрической формы платы, состояние контактов разъемов, нарушения соединений пайкой); - комплектности платы; - правильности установки элементов платы подключаемых через сокеты, "кроватки"; - ремонтировалась ли ранее плата или нет. Затем фиксируем полученную информацию на бумаге, зарисовываем исходное положение перемычек (джамперов) и микропереключателей. Измеряем сопротивление между цепями «дежурного» и вторичного электропитания и "землей" на разъеме электропитания (при прямом и обратном измерении должна быть видна разница измеренного сопротивления в соотношении примерно 3:2). Измеряем напряжение на батарее CMOS-памяти (примерно 2,8 - 3,3 вольта), контролируем наличие импульсов для часов реального времени. 2. Получение информации после включения электропитания. По включению тумблера "Сеть" на системный блок электропитания подается напряжение ~220 вольт и на плату поступают вторичные напряжения. Если вторичные напряжения в пределах заданного допуска, схемы контроля формируют сигнал PowerGood (P.G.- хорошее питание) и формируется сигнал системного сброса RESET, по которому все схемы компьютера устанавливаются в определенное исходное состояние. По окончании сигнала RESET начинается последовательное выполнение трех групп программ: - программ POST (Power-On-Self-Test); - программ выполняющих функцию загрузки операционной системы ("Начальный загрузчик", IPL-1, IPL-2 (Initial Programm Loading); - программ операционной системы и ее оболочек.

Принципы построения звуковых карт персональных компьютеров (ликбез).

Статья добавлена: 22.07.2019 Категория: Статьи

Принципы построения звуковых карт персональных компьютеров (ликбез). Диапазон звуковых частот, который способен слышать человек в очень большой степени зависит от индивидуальных особенностей конкретного человека, его возраста, накопленного опыта распознавания звуков, постоянного общения со звуком. В среднем человек воспринимает звук в диапазоне 20 – 20000 Гц. Колебания очень низкой частоты (инфразвук) воздействуют на человека, хотя он их не слышит, а многие животные слышат инфразвук (особенно собаки). Органы слуха у человека стереофонические, т. е. правое и левое ухо воспринимают звук независимо, поэтому человек способен выделять нужный звуковой сигнал и определять направление на источник сигнала. Человек воспринимает без болевых ощущений звук громкостью до 120 дБ, а при 150 дБ происходит повреждение органов слуха. На частоте звука 10 Гц порог слышимости равен 40дБ, а на частоте 10 кГц – 20 дБ. Наукой установлено, что человек определяет направление на источник звука примерно по одиннадцати параметрам, а современные звуковые технологии объемного звука имитируют только три из них. В реальной звуковой обстановке присутствуют эффекты искажающие звук: эхо, реверберация, поглощение и др. Современные технологии трехмерного звука лишь в небольшой степени способны моделировать эти процессы. Вся музыкальная культура построена на использовании гармонических колебаний (в основном реальный звук состоит из гармоник). В музыке интервал изменения основного тона нотного ряда в два раза обозначили термином «октава» (например, нота «до» второй октавы звучит на удвоенной частоте ноты «до» первой октавы). Средний человек воспринимает диапазон в 10 октав. За счет гармонических колебаний формируется полный частотный диапазон практически всех музыкальных инструментов. При обработке звука (даже цифровыми методами) неизбежно вносятся гармонические искажения в исходный сигнал. На компьютере обработка звука ведется цифровыми методами, так как обеспечить практически стопроцентную повторяемость звука от любой копии записи, можно только на цифровых устройствах, но, в конечном счете, самая сложная цифровая обработка звука заканчивается формированием аналогового сигнала, который превращают в звук. Исходный звук оцифровывают методом импульсно-кодовой модуляции (PCM - Pulse Code Modulation), при котором, например, с частотой дискретизации (принятой для CD-ROM) 44100 Гц в цифровом виде (16 двоичных разрядов обеспечивают охват диапазона 0 - 96 дБ) регистрируется текущая амплитуда звуковой волны. Уровень шумов дискретизации SNR (Signal/Noise Ratio) обычно равен 65-77 дБ и очень сильно зависит от формы и спектра оцифровываемого сигнала. Алгоритм обработки звуковых сигналов в мозге человека очень сложен, существующий метод сжатия, используемый в формате записи звука MPEG Audio Layer 3, упрощенно иммитирует итоговый результат работы мозга при обработке звука. Первоначально звуковые карты устанавливали на шину ISA, а затем на интерфейс PCI и др.. На рис. 1 показана блок-схема типичной компьютерной карты для обработки звука с интерфейсом РСI.

Пассивные оптические компоненты.

Статья добавлена: 19.07.2019 Категория: Статьи

Пассивные оптические компоненты. Для обеспечения передачи оптического сигнала по волоконно-оптическому кабелю от передатчика к приемнику используются пассивные оптические компоненты, которые включают в себя оптические соединители, розетки, шнуры, распределительные панели, кроссовые шкафы, соединительные муфты, оптические разветвители, аттенюаторы, системы спектрального уплотнения. По мере роста сложности и увеличения протяженности волоконно-оптической кабельной системы роль пассивных компонентов возрастает. Практически все системы волоконно-оптической связи, реализуемые для магистральных информационных сетей, локальных вычислительных сетей, а также для сетей кабельного телевидения, охватывают сразу все многообразие пассивных волоконно-оптических компонентов. Самым важным вопросом передачи информации по ВОЛС является обеспечение надежного соединения оптических волокон. Оптический соединитель - это устройство, предназначенное для соединения различных компонентов волоконно-оптического линейного тракта в местах ввода и вывода излучения. Такими местами являются: оптические соединения приемников и передатчиков с волокном кабеля, соединения отрезков оптических кабелей между собой, а также с другими компонентами. Различают неразъемные и разъемные соединители.

SATA RAID- массивы.

Статья добавлена: 18.07.2019 Категория: Статьи

SATA RAID- массивы. RAID - Redundant Array of Independent (или Inexpensive) Disks - избыточный массив независимых дисков. RAID это несколько жестких дисков, объединенных в одну систему для обеспечения скорости и отказоустойчивости. Контроллер системы RAID помещается между высокоскоростным потоком данных и несколькими более медленными потоками данных, направленными в диски массива RAID. При выполнении компьютером записи на диск контроллер RAID принимает быстрый поток данных и разбивает его на несколько синхронизированных потоков, по одному на каждый диск (расщепление потока данных - stripping). При чтении контроллер RAID принимает потоки данных с каждого диска, объединяет эти потоки в один и передает более быстрый поток данных дальше. Контроллер системы RAID выполняет также функции коррекции ошибок, например, в массив из восьми дисков можно добавить девятый содержащий только информацию для коррекции ошибок. Если в таком RAID-массиве откажет диск содержащий данные, то контроллер RAID, используя корректирующие коды, восстановит потерянные данные. Существует несколько вариантов реализации RAID, называемых уровнями, например, 0,1,2,3,4,5,6,7,8 и т. п. Разные уровни RAID обеспечивают различную производительность и устойчивость к сбоям, имеют разную стоимость. Применение RAID-массивов целесообразно в случае критически важных задач, требующих высокой надежности и производительности. Использование дискового массива RAID позволяет добиться наивысшей производительности обмена и высокой надежности хранения больших массивов данных, но это достигается либо с помощью дорогой платы RAID-контроллера, либо - программной организацией RAID-массива, но с ощутимым снижением производительности. В качестве решения проблемы создания недорогово и в то же время производительного RAID-массива был предложен RAID-контроллер SATA-дисков, впервые интегрированный в микросхеме южного моста ICH5R. RAID-контроллер SATA-дисков является программным, в организации его работы используются программы выполняемые центральным процессором, а обычный реальный аппаратный RAID-контроллер выполняется, как правило, на отдельной микросхеме.

Волоконно-оптический кабель (одномодовый и многомодовый).

Статья добавлена: 17.07.2019 Категория: Статьи

Волоконно-оптический кабель (одномодовый и многомодовый). Это наиболее перспективная среда, позволяющая передавать данные в виде световых волн по стеклянному "проводнику" или кабелю. Волоконно-оптические линии связи используются на расстояниях свыше одного километра. Характерной их особенностью является высокая защищенность от несанкционированного подключения (что не удивительно, поскольку для передачи данных не используются электрические сигналы). Существует две разновидности кабеля: одномодовый и многомодовый. Коаксиальный и волоконно-оптический кабель устроены почти одинаково. Сердечник последнего состоит из сплетения тонких стеклянных волокон и заключен в пластиковую оболочку (плакирование— cladding), отражающую свет обратно к сердечнику. Плакирование покрыто концентрическим защитным слоем пластика. Несколько волоконно-оптических кабелей объединяются в жгут и покрываются еще одним защитным слоем пластика. На рис. 1 показано устройство волоконно-оптического кабеля.

Стандарты передачи данных в сотовых сетях (3G, GPRS, EDGE, UMTS, WCDMA, HSDPA, HSUPA, HSPA, HSPA+, LTE, 5G).

Статья добавлена: 15.07.2019 Категория: Статьи

Стандарты передачи данных в сотовых сетях (3G, GPRS, EDGE, UMTS, WCDMA, HSDPA, HSUPA, HSPA, HSPA+, LTE, 5G). Наиболее распространённой технологией 4G в мире и в России в частности стал стандарт LTE. В этом смысле, LTE и 4G — синонимы. Стандарты 4G, как и 3G, разрабатывались с одной и той же ключевой целью: сделать услугу мобильного интернета лучше. В эволюции беспроводных технологий 3G стоит ступенькой ниже 4G. В свое время появление 3G-интернета открыло новую эру мобильного интернета, но сегодня 3G уступает 4G по скорости передачи данных. 3G используется уже почти 20 лет, тогда как 4G начали разрабатывать лишь с 2008 года. 3G (технология мобильной связи третьего поколения) — это набор услуг, который объединяет в себя высокоскоростной мобильный доступ к сети интернет, а также технологию радиосвязи. 3G строится на основе пакетной передачи данных. Данный вид связи работает на границе дециметрового и сантиметрового диапазона, скорость передачи данных составляет до 3,6 Мбит/с. Такой доступ в интернет позволяет не только быстро загружать страницы сайтов или картинки, но и смотреть видеоролики в режиме онлайн. 4G – (fourth generation) в переводе означает четвертое поколение. Это более перспективное направление мобильной связи, которое развивается в направлении технологии частотного уплотнения. Переход многих стран к сетям 4G, минуя 3G, приведет к новому витку развития скоростных телекоммуникационных технологий. Технология HSPA+ (4G) позволяет абонентам смотреть многоканальные телевизионные трансляции повышенной четкости. Кроме того, используя HSPA+ (4G) можно через мобильный телефон управлять домашней бытовой техникой. А междугородняя телефонная связь становится с данной системой невероятно дешевой. Технология HSPA+ (4G) путем добавления сложных модуляций uplink и downlink, а также мультивхода и мультивыхода, увеличивает скорость от пользователя до 70 Мбит/с, а к абоненту – до 672 Мбит/с. HSPA в гаджетах обозначается то же значком H. Напоминает эволюцию GPRS в EDGE. Скорость загрузки от сети к абоненту до 42,2 мегабит/сек. От абонента к сети до 5,76 мегабит/сек, т.е. не изменилась. Но скорость загрузки существенно выросла. Сети 5G тоже непременно появятся, и будут они непременно лучше, чем 4G. МТС совместно с производителями оборудования уже проводит тестирование. В 2018 году, во время чемпионата мира по футболу, прошедшего в России, МТС показала всем желающим возможности связи пятого поколения в демонстрационных зонах. В 2019 году испытания продолжатся. 5G приносит три новых аспекта в эту схему: большая скорость (для передачи большего количества данных), более низкая латентность (большая отзывчивость) и возможность подключения гораздо большего количества устройств одновременно (для датчиков и смарт-устройств).

Модернизация компьютера. Расчет мощности БП.

Статья добавлена: 12.07.2019 Категория: Статьи

Модернизация компьютера. Расчет мощности БП. Чтобы выяснить, можно ли модернизировать компьютер, сначала вычислите мощность, потребляемую его отдельными узлами, а затем определите мощность блока питания. После этого станет ясно, нужно ли заменять блок питания более мощным. К сожалению, эти расчеты не всегда удается выполнить, потому что многие фирмы-производители не сообщают, какую мощность потребляют их изделия. Довольно сложно определить этот параметр для устройств с напряжением питания +5В, включая системную плату и платы адаптеров. Мощность, потребляемая системной платой, зависит от нескольких факторов. Большинство системных плат потребляют ток около 5А, но будет лучше, если вы как можно точнее вычислите значение тока для вашей конкретной платы. Хорошо, если вам удастся найти точные данные для плат расширения; если их нет, то проявите разумный консерватизм и исходите из максимальной мощности потребления для плат адаптеров, допускаемой стандартом используемой шины. Обычно превышение допустимой мощности происходит при заполнении разъемов и установке дополнительных дисководов. Некоторые жесткие диски, и другие устройства могут перегрузить блок питания компьютера. Обязательно проверьте, достаточно ли мощности источника +12В для питания всех дисководов. Особенно это относится к компьютерам с корпусом Tower, в котором предусмотрено много отсеков для накопителей. Проверьте также, не окажется ли перегруженным источник +5В при установке всех адаптеров. С одной стороны, лучше перестраховаться, а с другой - имейте в виду, что большинство плат потребляет меньшую мощность, чем максимально допустимая стандартом шины. Многие пользователи компьютеров заменяют блок питания только после того, как он сгорит. Конечно, при ограниченном бюджете принцип "не сломался - не трогай" в какой-то мере оправдан. Однако часто блоки ломаются не совсем: они продолжают работать, периодически отключаясь или подавая на свои разъемы нештатные значения напряжений. Компьютер при этом работает, но его поведение абсолютно непредсказуемо. Вы будете искать причину в программе, хотя действительным виновником является перегруженный блок питания. Опытные пользователи персональных компьютеров предпочитают не применять метод расчета мощности. Они просто покупают компьютеры с высококачественным источником питания, рассчитанным на 300 или 350 Вт (или устанавливают такой источник самостоятельно) и затем при модернизации системы не задумываются о потребляемой мощности. Если вы не планируете собрать систему с шестью дисководами HDD и дюжиной других внешних устройств, то, вероятно, не превысите возможности такого блока питания. В большинстве совместимых блоков питания выходная мощность колеблется от 150 до 300 Вт. Блоки малой мощности непрактичны, и при желании вы можете заказать блок питания мощностью до 500 Вт, который будет вполне соответствовать вашим потребностям. Блоки питания мощностью более 300 Вт предназначены для тех энтузиастов, которые "набивают" системы Desktop или Tower всевозможными устройствами. Они могут обеспечить работу системной платы с любым набором адаптеров и множеством дисковых накопителей. Однако превысить паспортную мощность блока питания вам не удастся, потому что в компьютере просто не останется места для новых устройств. Параметры блоков питания. Качество блоков питания определяется не только выходной мощностью. Опыт показывает, что, если в одной комнате стоит несколько компьютеров и качество электрической сети невысокое (часто пропадает напряжение, возникают помехи и т.п.), системы с мощными блоками питания работают гораздо лучше систем с дешевыми блоками, устанавливаемыми в некоторых моделях невысокого класса. Обратите внимание, гарантирует ли фирма-производитель исправность блока питания (и подключенных к нему систем) при следующих обстоятельствах: - полном отключении сети на любое время; - любом понижении сетевого напряжения; - кратковременных выбросах с амплитудой до 2500В (!) на входе блока питания (например, при разряде молнии). Хорошие блоки питания отличаются высоким качеством изоляции: ток утечки - не более 500 мкА, что бывает важно в том случае, если сетевая розетка плохо заземлена или вовсе не заземлена. Как видите, требования, предъявляемые к высококачественным устройствам, очень жесткие. Разумеется, желательно, чтобы блок питания им соответствовал. При покупке компьютера (или замене блока питания) необходимо обратить внимание на целый ряд параметров источника питания.

Бессвинцовые технологии пайки. Проблемы и их решения.

Статья добавлена: 12.07.2019 Категория: Статьи

Бессвинцовые технологии пайки. Проблемы и их решения. Как же избежать дефектов при ручной пайке компонентов, выполненных по бессвинцовой технологии?. Существует мнение о том, что компоненты, не содержащие свинца, требуют особых технологий ручной пайки. Такая точка зрения распространена и среди разработчиков, производителей электронной техники и специалистов, занимающихся ремонтом. Все ведущие производители единодушны в том, что большинство Pb-free компонентов полностью совместимы со стандартными технологиями ручной пайки оловянно-свинцовыми припоями. Совместимость с требованиями RoHS, так же как и знак «Pb-free» не означают, что элемент необходимо паять обязательно бессвинцовым припоем. Но в процессе пайки необходимо предотвратить термодиструкцию электронных компонентов (эта неприятность может возникнуть потому, что большинство из «Pb-free» припоев имеют повышенную температуру плавления, которая несовместима с максимальной температурой пайки выбранных компонентов). Специалисты по технологиям пайки и паяльному оборудования утверждают, что если выполнять ряд рекомендаций для ручной пайки (см. далее), то качество пайки и компоненты электронных схем не пострадают. Для ручной пайке, необходимо выбирать паяльные станции, обладающие достаточным запасом мощности, термостабильностью и возможностью поддержания постоянной температуры при работе на более высоких уровнях, необходимых для бессвинцовых материалов. Так как температура плавления бессвинцового припоя выше, чем у свинцовосодержащего, температура жала должна быть примерно 343°C (свинцовый припой требовал 315°C). В таком режиме долговечность традиционных паяльных жал резко снижается и поэтому, в процессе пайки, необходимо использовать насадки, разработанные специально под «Pb-free» пайку. Современные паяльные станции обеспечивают приведенные выше требования, но при работе с бессвинцовыми припоями, для соблюдения необходимых температурных профилей некоторых компонентов, имеет смысл быстрее убирать жало пальника с места пайки. Смачиваемось у бессвинцовых материалов хуже, чем у свинцовосодержащих. Кроме того, у них хуже окисляемость во время пайки, наблюдается образование кристаллических нитей и пр..

Особенности схем оптоэлектронных устройств (CD, LD), меры предосторожности при их обслуживании.

Статья добавлена: 12.07.2019 Категория: Статьи

Особенности схем оптоэлектронных устройств (CD, LD), меры предосторожности при их обслуживании. Существуют два основных типа источников излучения (полупроводниковых излучателей когерентного света), удовлетворяющие требованиям современных оптоэлектронных устройств, которые широко используются в настоящее время: - светоизлучающие диоды (CD); - полупроводниковые лазерные диоды (LD). Основной отличительной чертой между светодиодами и лазерными диодами является ширина спектра излучения. Светоизлучающие диоды имеют широкий спектр излучения, в то время как лазерные диоды имеют значительно более узкий спектр. Оба излучающих устройства компактны и хорошо согласуются со стандартными электронными схемами. Лазеры и особенно СD - излучают интенсивное инфракрасное излучение, невидимое для человеческого глаза. Излучение может постепенно воздействовать на сетчатку глаза и приводить к ее повреждению и даже к потере зрения. Нельзя допускать попадания излучения из источника или из волокна, подключенного к источнику, в глаз. Перед осмотром выходного отверстия источника или волокна, убедитесь, что источник излучения отключен. Включен источник или нет зрительно не видно поэтому необходимо быть предельно осторожным. Прежде всего, перед работой по ремонту оптической системы, необходимо познакомиться с мерами предосторожности, которые необходимо соблюдать, чтобы не нанести вред своему зрению. Приступая к настройке и диагностике, необходимо сначала познакомиться с рядом особенностей, связанных с обслуживанием любых лазерных устройств. Нанесенный на лазер желтым цветом знак «CAUSION» («предостережение») означает, что немедленное закрывание глаз защитит глаза от повреждения. Нанесенный на лазер красный знак «DANGER» («опасно») предупреждает, что даже кратковременное попадание луча в глаза опасно. Если вы видите символ лазера (рис. 1) – это предупреждение об опасности, с которой можно столкнуться при техническом обслуживании оборудования. Кроме обычных мер предосторожности, предусматриваемых при обслуживании электронных схем, эксплуатация лазера требует некоторого специального, особого внимания. Как и любой источник высокоинтенсивного излучения, лазерный луч при прямом воздействии может вызвать повреждение глаз или ожоги кожи. К тому же луч лазера обычно человеческий глаз не видит. Для специалистов по обслуживанию таких устройств, которым в процессе ремонта приходится добираться до внутренних схем, и работать при включенном питании лазера (устранив блокировки, зажав переключатели и т.д.). В этих случаях следует, конечно, соблюдать особую осторожность. Необходимо отметить, что большая часть фирм-изготовителей, разработала ряд знаков, предупреждающих о наличии лазерного излучения (обычно это треугольник с яркой звездой внутри него). Кроме потенциально опасных лучей, лазер создает сильное электромагнитное излучение, которое, не являясь опасным для человека, оказывает отрицательное воздействие на наручные часы, магнитные ленты и т.д. Лазерные диоды, так же, как МОП и КМОП интегральные микросхемы, чувствительны к статическому электричеству. Поэтому и обращаться с ним следует соответствующим образом. Для предотвращения выхода из строя лазерного диода при транспортировке, фирмы-изготовители «закорачивают» выводы лазерного диода каплей припоя. После установки оптического преобразователя и подключения разъема необходимо удалить припой в месте «закорачивания» выводов. Точка, в которой необходимо удалить припой, указывается в паспорте оптического преобразователя. В случае снятия блокировок категорически запрещается смотреть непосредственно в объектив при включенном питании. Осматривать объектив следует со стороны, на расстоянии не менее 30 см. Для измерений и проверки функционирования используется в основном та же самая измерительная аппаратура, что и при обслуживании обычных аналоговых устройств. Цифровые и аналоговые сигналы или постоянные напряжения измерить и проконтролировать с помощью двухлучевого осциллографа, частотомера и мультиметра, но желательно использовать те приборы и инструменты, которые рекомендованы фирмами-изготовителями в сервисных инструкциях. Ток 150 мА разрушает любые лазерные диоды. Лазерные диоды ILD чувствительны к колебаниям температуры окружающей среды и сильно реагируют на изменение питающего тока. Для обеспечения безопасности работы ILD необходимо постоянно контролировать эмиссию светового потока с лазерного диода. Автоматический контроль питания ILD осуществляется применением схем с отрицательной обратной связью, когда при уменьшении мощности лазерного луча увеличивается ток возбуждения ILD,а увеличение мощности лазерного луча ILD вызывает обратный процесс (система автоматического регулирования мощности лазерного луча).

Стр. 51 из 213      1<< 48 49 50 51 52 53 54>> 213

Лицензия