Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Для чего используется видеопамять?

Для чего используется видеопамять?

Скорость, с которой информация поступает на экран, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов:

- разрешение вашего монитора;

- количество цветов, из которых можно выбирать при создании изображения;

- частота, с которой происходит обновление экрана.

Разрешение определяется количеством пикселов на линии и количеством самих линий. Поэтому, на дисплее, например, с разрешением 1024х768, изображение формируется каждый раз при обновлении экрана из 786432 пикселов информации.

Обычно, частота обновления экрана имеет значение не менее 75Hz или циклов в секунду. Следствием мерцание экрана является зрительное напряжение и усталость глаз при длительном наблюдении за изображением. Для уменьшения усталости глаз и улучшения эргономичности изображения, значение частоты обновления экрана должно быть достаточно высоким, не менее 75 Hz.

Число допускающих воспроизведение цветов или глубина цвета это десятичный эквивалент двоичного значения количества битов на пиксел. Так, 8 бит на пиксел эквивалентно 28 или 256 цветам, 16 битный цвет, часто называемый просто high-color, отображает более 65000 цветов, а 24 битный цвет, также известный, как истинный или true color, может представить 16.7 миллионов цветов. 32 битный цвет, с целью избежать путаницы, обычно означает отображение истинного цвета с дополнительными 8 битами, которые используются для обеспечения 256 степеней прозрачности. Так, в 32 битном представлении каждый из 16.7 миллионов истинных цветов имеет дополнительные 256 степеней доступной прозрачности. Такие возможности представления цвета имеются только в системах высшего класса и графических рабочих станциях.

Так как компьютер все больше становится средсвом визуализации, с более лучшей графикой, а графический интерфейс пользователя становится стандартом, пользователи хотят видеть больше информации на своих мониторах. Мониторы с диагональю 17 дюймов становятся стандартным оборудованием и разрешение 1024х768 пикселов адекватно заполняет экран с таким размером. Некоторые пользователи используют разрешение 1280х1024 пикселов на 17 дюймовых мониторах и более.

В обычной графической подсистеме для обеспечения разрешения 1024x768 требуется 1 Мегабайт памяти. Несмотря на то, что только три четверти этого объема памяти необходимо в действительности, графическая подсистема обычно хранит информацию о курсоре и ярлыках в буферной памяти дисплея (off-screen memory) для быстрого доступа. Пропускная способность памяти определяется соотношением того, как много мегабайт данных передаются в память и из нее за секунду времени. Типичное разрешение 1024х768, при 8 битной глубине представления цвета и частоте обновления экрана 75 Hz, требует пропускной способности памяти 1118 мегабайт в секунду. Добавление функций обработки 3D графики требует увеличения размера доступной памяти на борту видеоадаптера. Дополнительная память, сверх необходимой для создания изображения на экране, используется для z-буфера и хранения текстур.

Z-буферизация- изначально эта технология применялась в системах автоматизированного проектирования. В двумерном мире объекты не могут располагаться впереди или позади друг друга, поэтому нет проблем с перекрытием. Но в трехмерном мире один объект может находиться впереди другого. Обычно световые лучи не проникают через непрозрачные объекты, поэтому мы видим все, что находится впереди, и не видим того, что позади.

Когда два объекта перекрываются, нужно выяснить, какой из них находится впереди, чтобы знать, какие пиксели объекта нужно показать на дисплее. Область, в которой пересекаются две фигуры, можно описать, указав для каждого пиксела фигур величину расстояния от него до условного заднего плана. Если дополнить обычную видеопамять картой этих расстояний для каждого пикселя, то будет всегда известно, нужно ли закрашивать конкретный пиксель: если значение расстояния (или значение Z) у пикселя меньше, значит, он позади и его не нужно закрашивать.

Эту идею можно реализовать аппаратно. Решение, состоит в создании параллельно с памятью дисплея другого массива памяти, называемого Z-буфером. Каждый раз при записи пикселя вычисляется его значение Z. При этом записываются только пиксели с большими значениями Z и обновляются расстояния в Z-буфере. Все остальные пикселы игнорируются. Таким образом, в каждой ячейке Z-буфера хранится расстояние по оси Z (вглубь экрана) для рисуемого пиксела, поэтому легко проверить, затенен ли новый записываемый пиксель или нет. Z-буфер требует дополнительной памяти, и, чем большая точность нужна для значений Z, тем больше памяти нужно для запоминания значений Z. Если используется разрешающая способность 640х400 и значения Z в виде 16-разрядных (двухбайтовых) чисел, то нужно иметь 0,5 мегабайта памяти только для Z-буфера. С помощью Z-буфера можно легко решить, какие объекты расположены на переднем плане, но при этом понадобится вдвое больший объем видеопамяти. Почти все современные 3D-ускорители имеют 24-х или 32-битную Z-буферизацию, что в значительной мере повышает разрешающую способностьи, как следствие, качество рендеринга.

От разрядности Z-буфера зависит разрешающая способность графического конвейера по глубине. При малой разрядности (например, 8 бит) для близко расположенных элементов рассчитанные значения Z могут совпасть, в результате картина перекрытий исказится. Большая разрядность буфера требует большого объема памяти, доступного графическому процессору. По нынешним меркам минимальная разрядность Z-буфера — 16 бит, профессиональные графические системы используют 32-битный Z-буфер.

Есть и другие решения проблемы со скрытыми поверхностями, но все они решаются путем компромисса между использованием памяти дисплея и дополнительной нагрузкой на процессор. Главный метод, применяемый для peшения проблем, заключается в том, чтобы упорядочить (отсортировать) вершины многоугольников по их координатам Z. Тогда сначала закрашиваются наиболее отдаленные объекты на экране, а наиболее близкие объекты накладываются на дальние. При этом возникают проблемы с поверхностями, наклонными к оси Z, так как расстояние пикселя от заднего плана может изменяться по мере его удаления от вершины. Решение такой проблемы требует еще более сложных вычислений.

Можно сократить работу процессора, проявив небольшую хитрость при упорядочении объектов по их координатам Z. Если какая-то поверхность полностью скрыта другими или повёрнута от наблюдателя, то ее совсем не нужно рисовать первой. А если мы исключили операцию рисования, то многоугольник не надо заполнять картой текстуры, в связи с этим уменьшается количество работы для процессора.

Для визуализации трехмерных изображений с высокой степенью детализации необходимо применять специальные методы наложения текстур, которые устраняют нежелательные эффекты и делают сцены более реалистичными. Отображение текстуры более сложно, чем простое копирование растра шаблона на экран, потому что требует работы с эффектами перспективы в каркасном представлении. Прямоугольный растр шаблона должен быть преобразован для получения изображения в перспективе. Это видно, скажем, на примере стен, неперпендикулярных линии, вдоль которой смотрит зритель. Такие поверхности удаляются вдоль линий перспективы к точке схода, причем текстура уменьшается по мере того, как ваш взгляд перемещается вдаль. Процесс трехмерной визуализации отображает стены и другие поверхности с учетом перспективы и накладывает текстуры для создания реалистического изображения.

Программное обеспечение для усиления эффекта трехмерности, изменяет вид текстур в зависимости от положения примитива (т.е. расстояния до примитива и его наклона). Этот процесс называется перспективной коррекцией.

В реальном мире источник света обычно точечный, поэтому освещенность поверхности неравномерна, она увеличивается в направлении источника. Поверхности также имеют различную отражающую способность, что сказывается на используемых текстурах. Блестящая металлическая искривленная поверхность отразит точечный источник света в точке (точка, называется зеркальным отражением точки, в которой находится точечный источник света), местоположение которой определяется законами геометрической оптики. Математический аппарат для выполнения этой работы хорошо известен, но процессоры и графические видеоплаты должны иметь для выполнения этих функций достаточную производительность. Для экранных форматов с более высокой разрешающей способностью вычислений требуется еще больше (для разрешающей способности 640х400 требуется вчетверо больше вычислений, чем для 320х200). Подобные форматы не могли поддерживаться устаревшими моделями процессоров, поэтому они появились только с приходом быстродействующих процессоров. Для обновления экрана при быстром перемещении каркасов и карт текстуры по экрану при высокой частоте кадров требуется не только большая скорость вычислений, но и высокая пропускная способность канала видеоплаты. Вот почему при рисовании трехмерных объектов стали использовать быстрые шины на материнской плате и соответствующую видеоплату с хорошей производительностью.

Видеопамять. Для хранения изображений, текстур и другой необходимой информации на плате видеокарты установлены чипы памяти, соединённые с графическим процессором специальной шиной, ширина которой определяется в битах: 64, 128, 256, 320, 384, 512. Необходимая разрядность шины, поддерживаемая видеопроцессором, получается путём установки определённого количества микросхем с интерфейсом 16 или 32 бит. Шиной в 16 бит снабжены чипы первого стандарта графической памяти GDDR и второго поколения – GDDR2, шиной в 32 бит могут похвастаться чипы как первого поколения, так и третьего – GDDR3, а также вышедшего совсем недавно четвёртого – GDDR4 и GDDR5. Так, если карта оборудована памятью стандарта GDDR2, то для шины 128 бит необходимо будет 8 микросхем, если же на карте установлена GDDR3, то хватит и четырёх. Чем больше общая ширина шины, тем выше пропускная способность памяти, а это, в свою очередь, влияет на производительность видеоадаптера в играх при высоком разрешении и при качественной графике (все настройки – на максимуме).

Компания AMD представиласерию Radeon HD 2900 с 512-битной шиной, видеокарты Radeon HD 4870 были с памятью типа GDDR-5 производства Qimonda. Вслед за настольным сектором память типа GDDR-5 прописалась в ноутбуках, а затем и в игровых консолях. Сейчас поставляются микросхемы плотностью 512 Мбит, способные работать на скорости 4.0 ГГц DDR и микросхемы GDDR-5, способные работать на частоте 5.0 ГГц DDR, а в дальнейшем развитии память этого типа достигла частот около 6.0 ГГц DDR.

Память GDDR5X сейчас работает на частоте до 10 ГГц, но ее спецификации подразумевают возможность достижения значения в 12 ГГц, эта память энергоэффективнее существующей.

Память GDDR6 - двухгигабайтная микросхема обеспечивает скорость передачи данных в 16 Гбит/с в расчёте на один вывод и работает с напряжением 1,35 В. Использование микросхем GDDR6 в видеоускорителях с 256-разрядной шиной позволит увеличить пропускную способность памяти (ПСП) до 512 Гбайт/с или до 768 Гбайт/с в топовых адаптерах с 384-битной шиной памяти. Для сравнения, видеоускоритель Nvidia Titan Xp, располагающий 12 гигабайтами GDDR5X с эффективной частотой 11,4 ГГц, обладает ПСП около 548 ГБ/с.


Лицензия