Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Варианты подключения нагрузки и аккумулятора в мобильных компьютерах.

Варианты подключения нагрузки и аккумулятора в мобильных компьютерах.

 

 

                Существует два варианта подключения нагрузки и аккумулятора: непосредственное подключение (в одну точку) и подключение с возможностью выбора путей протекания зарядного тока и тока нагрузки.
Существует два варианта непосредственного подключения нагрузки к аккумулятору:

 - в первом случае нагрузка подключается после измерительного резистора RSNS (см. рис. 1),

 - а во втором — до него (см. рис. 2).

                В первом варианте входное напряжение VIN преобразуется в напряжение VOUT с высоким КПД. При подключенном сетевом адаптере обеспечивается энергопитание нагрузки и одновременно зарядка аккумулятора, в случае отключения адаптера питание нагрузки осуществляется от аккумулятора.

 QIP Shot - Image: 2016-04-29 13:34:47

Рис. 1.

QIP Shot - Image: 2016-04-29 13:35:20 

Рис. 2.

 

                При отключенном адаптере энергопитание нагрузки осуществляется непосредственно от аккумулятора с минимальными потерями мощности:
 – возможно использование технологии динамического управления током зарядки аккумулятора (Dynamic Power Management — DPM), что позволяет за счет динамического снижения тока зарядки предотвратить потенциальную вероятность перегрузки ИС по току зарядки и перегрева ее корпуса при пиковых нагрузках, а, кроме того, сохраняется возможность ограничения суммарного входного тока;
 – малы изменения напряжения на нагрузке;
 – достаточно просто на программном уровне реализуется режим токового мягкого старта.
                Если средний ток нагрузки длительное время достаточно велик, то процесс зарядки затягивается, и возникает ситуация, при которой аккумулятор непрерывно находится в процессе зарядки, что сокращает его срок службы. Поскольку предел ограничения суммарного тока фиксирован на аппаратном уровне, то при достаточно большом токе через нагрузку ток зарядки аккумулятора также снижается, что приводит к чрезмерному увеличению времени зарядки аккумулятора до его полной емкости, и поэтому вполне вероятна ситуация, при которой будет просто невозможно полностью его зарядить.
                Если при заряженном аккумуляторе ток нагрузки увеличится, то вследствие падения напряжения на внутреннем сопротивлении аккумулятора выходное напряжение может снизиться до порога, при котором будет инициироваться очередной цикл зарядки, который, в свою очередь, быстро завершится. Таким образом, возможна ситуации, при которой процесс зарядки будет стартовать циклически. При небольшом токе нагрузки интервал времени от момента уменьшения выходного напряжения (за счет падения напряжения на аккумуляторе) до необходимого порога для старта очередного процесса зарядки существенно увеличивается.
                В фазе предварительной зарядки (при напряжении на аккумуляторе ниже 3,0 В) ток зарядки составляет примерно 10% номинальной емкости аккумулятора, чего зачастую слишком мало для энергоснабжения продолжающего работать устройства, которое в этом случае вынуждено подпитываться от аккумулятора, а последний соответственно продолжает разряжаться. Кроме того, поскольку для предварительной фазы зарядки отводится определенный задаваемый специальным таймером интервал времени, в течение которого напряжение на аккумуляторе должно достичь порога 3,2 В, то создается ситуация, при которой напряжение на аккумуляторе не возрастает, а таймер начинает сигнализировать, что аккумулятор неисправен.
                Основной недостаток непосредственного подключения аккумулятора к нагрузке заключается в том, что при полностью или глубоко разряженном аккумуляторе напряжение на нагрузке (даже при условии подключения сетевого адаптера) равно напряжению на аккумуляторе, чего бывает явно недостаточно для работы устройства, и, конечно, во многих случаях это просто недопустимо.
                Во втором варианте (см. рис. 2) нагрузка подключена до измерительного резистора (RSNS). Эта топология, по сравнению с той, в которой нагрузка подключена после резистора, имеет ряд преимуществ. Основным является то, что в ней контролируется ток, протекающий только через аккумулятор, и поэтому все три режима зарядки (предварительный, режим собственно зарядки с током, равным величине емкости аккумулятора и режим завершения) работают без каких-либо проблем, связанных с протеканием тока через нагрузку.
                Глубоко разряженный аккумулятор можно без риска подключать к контроллеру зарядки, не опасаясь завершения работы таймера, определяющего безопасную продолжительность предварительной фазы зарядки, еще до окончания этого этапа. Следует также принимать во внимание, что суммарный ток через контроллер зарядки ограничен на уровне максимально допустимого тока через кристалл, а также работой системы защиты от перегрева ИС. Ток зарядки не уменьшается при росте тока нагрузки, поэтому эта топология не используется при больших токах нагрузки.
                При больших токах нагрузки и зарядки обеспечить низкий уровень тепловыделения крайне сложно даже при использовании импульсных регуляторов со встроенными транзисторными ключами. Поэтому при больших токах мощные ключи, как правило, не интегрируются на кристалле микросхемы, а размещаются вне ее корпуса.

                Схема непосредственного подключения аккумулятора к нагрузке и контроллеру зарядки, созданному на основе линейного регулятора, отличается простотой, а устройства, выполненные на базе этой архитектуры, и более низкой стоимостью. Однако при больших токах нагрузки есть большая вероятность перегрева кристалла ИС. При непосредственном подключении аккумулятора к нагрузке можно достичь минимального изменения уровня напряжения на нагрузке.
                Проблема потери мощности сохраняется также и в контроллерах зарядки, созданных на основе непрерывного регулирования, с разделением путей протекания токов нагрузки и зарядки. Более высокого КПД можно достичь за счет применения импульсного регулятора, что позволяет создавать на его базе контроллеры с током зарядки аккумулятора более 10 А. В этих контроллерах обычно используют технологию разделения путей протекания токов нагрузки и зарядки, преимуществом которой является высокая надежность.
                В контроллерах зарядки, созданных на базе линейных регуляторов с разделением путей протекания токов нагрузки и зарядки (PowerPath Technology) возможны следующие варианты:

 - в случае небольшого тока нагрузки напряжение VOUT равно почти 5 В (VIN), а напряжение на аккумуляторе VBAT= 3,7В. При этом линейный регулятор контроллера зарядки используется неэффективно.

 - при большом токе через нагрузку к ней дополнительно подключается аккумулятор и при

VIN=5В, VOUT= VBAT= 3,7 В (см. рис. 3). В этом случае неэффективно используется проходной транзистор контроллера зарядки. И в первом, и во втором случаях сохраняется величина падения напряжения на элементах регулирования VIN– VOUT= 1,3 В или VOUT– VBAT=1,3 В, что и приводит к нежелательной потере мощности.

                На рис. 4 показана структурная схема контроллера зарядки в которой для подключения аккумулятора к нагрузке используется устройство, выполняющее функции «идеального» диода.

QIP Shot - Image: 2016-04-29 13:36:01 

Рис. 3.

QIP Shot - Image: 2016-04-29 13:36:30 

Рис. 4. Структурная схема устройства зарядки с разделением направлений протекания токов зарядки и нагрузки.

 

                Широко применяемые диоды Шоттки отличаются по сравнению с другими полупроводниковыми диодами малым прямым падением напряжения и высокой скоростью переключения. При использовании этого диода в качестве полупроводникового ключа, например, в схемах автоматического подключения к нагрузке аккумулятора или сетевого адаптера, как правило, применяется простая схема монтажного «ИЛИ», недостатком которой является сравнительно большое падение напряжения на диоде. При повышении тока нагрузки растут и потери мощности на нем. Для решения этой проблемы можно с использовать в качестве диода МОП-транзистор.              Специалисты компании Linear Technology предложили также способ определения момента переключения «идеального» диода в закрытое и открытое состояния. Для этого осуществляется измерение падения напряжения между истоком (анодом) и стоком (катодом) транзистора(МОП-транзистор с каналом N-типа).

                В момент подключения входного напряжения (если входное напряжение больше выходного), ток через защитный диод транзистора течет в нагрузку. Транзистор открывается, и падение напряжения на нем равно ток умноженный на сопротивление перехода сток-исток (U=I*R - это напряжение обычно примерно в десять раз ниже, чем падение напряжения на диоде Шоттки). Если напряжение на аноде ниже, чем на катоде, транзистор закрывается.
                Для мониторинга падения напряжения на транзисторе используется специальный усилитель. Падение напряжения между стоком и истоком открытого транзистора поддерживается с помощью специального следящего усилителя на уровне 25 мВ. При росте тока нагрузки повышается также и управляющее напряжение на затворе транзистора, и соответственно, снижается сопротивление открытого канала. Таким способом падение напряжения на транзисторе поддерживается почти постоянным на уровне 25 мВ. Предложенный метод управления МОП-транзистором позволяет реализовать плавное переключение транзистора и даже при небольших токах нагрузки получить минимальную разницу напряжения между стоком и истоком.

 

 



 


Лицензия