Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Особенности SSD-накопителей.

Особенности SSD-накопителей.

Для того чтобы прочитать блок данных с винчестера (HDD) сначала нужно вычислить, где он находится, потом переместить блок магнитных головок на нужную дорожку, подождать пока нужный сектор окажется под головкой и тогда произвести считывание. Хаотические запросы по чтению к разным областям жесткого диска еще больше сказываются на времени доступа. При таких запросах HDD вынуждены постоянно "гонять" головки по всей поверхности "блинов" и даже переупорядочивание очереди команд спасает не всегда. Зато в SSD все просто - вычисляем адрес нужного блока и сразу же получаем к нему доступ по чтению/записи. Никаких механических операций не требуется, вс время уходит только на трансляцию адреса и передачу блока данных. Чем быстрее флэш-память, контроллер и внешний интерфейс, тем быстрее доступ к данным. А вот при изменении/стирании данных в SSD накопителе уже не все так просто. Микросхемы NAND флэш-памяти оптимизированы для секторного выполнения операций. Флеш-память пишется блоками по 4 Кбайта, а стирается по 512 Кбайт.
При модификации нескольких байт внутри некоторого блока контроллер выполняет следующую последовательность действий:
- считывает блок, содержащий модифицируемый блок во внутренний буфер/кеш;
- модифицирует необходимые байты;
- выполняет стирание блока в микросхеме флэш-памяти;
- вычисляет новое местоположение блока в соответствии с требованиями алгоритма перемешивания;
- записывает блок на новое место.
Как только вы записали информацию, она не может быть перезаписана до тех пор, пока не будет очищена. Проблема заключается в том, что минимальный размер записываемой информации не может быть меньше 4 Кб, а стереть данные можно минимум блоками по 512 Кб. Для этого контроллер группирует и переносит данные для освобождения целого блока (вот тут и сказывается оптимизация операционной системы (ОС) для работы с HDD).
При удалении файлов операционная система не производит физическую очистку секторов на диске, а только помечает файлы как удаленные, и знает, что занятое ими место можно заново использовать. Работе самого накопителя HDD это никак не мешает. Хотя такой метод удаления помогает повысить производительность при работе с HDD, но при использовании SSD он становится проблемой. В SSD, как и в традиционных жестких дисках, данные все еще хранятся на диске после того, как они были удалены операционной системой. Но дело в том, что твердотельный накопитель не знает, какие из хранящихся данных являются полезными, а какие уже не нужны и вынужден все занятые блоки обрабатывать по длинному алгоритму.
Прочитать, модифицировать и снова записать на место, после очистки затронутых операцией ячеек памяти, которые с точки зрения ОС уже удалены. Следовательно, чем больше блоков на SSD содержит полезные данные, тем чаще приходится прибегать к процедуре чтение > модификация > очистка > запись, вместо прямой записи. Вот здесь пользователи SSD сталкиваются с тем, что быстродействие диска заметно снижается по мере их заполнения файлами. Накопителю просто не хватает заранее ст ртых блоков. Максимум производительности демонстрируют чистые накопители, а вот в ходе их эксплуатации реальная скорость понемногу начинает снижаться. Полное стирание данных стоит ждать тогда, когда на диск будет записано данных равное количеству свободного места + объем резерва (примерно 4 Гб для 60Гб SSD). Если файл попад т на "изношенную" ячейку, контроллер ещ не скоро перезапишет е новыми данными.
Раньше в интерфейсе ATA просто не было команд для физической очистки блоков данных после удаления файлов на уровне ОС (для HDD они просто не требовались), но появление SSD заставило разработчиков пересмотреть отношение к данному вопросу. В результате в спецификации ATA появилась новая команда DATA SET MANAGEMENT, более известная как Trim. Она позволяет OC на уровне драйвера собирать сведения об удаленных файлах и передавать их контроллеру накопителя.
В периоды простоя, SSD самостоятельно осуществляет очистку и дефрагментацию блоков отмеченных как удаленные в ОС. Контроллер перемещает данные так, чтобы получить больше предварительно стертых ячеек памяти, освобождая место для последующей записи. Это дает возможность сократить задержки, возникающие в ходе работы. Но для реализации Trim необходима поддержка этой команды прошивкой накопителя и установленным в ОС драйвером. Сейчас только самые последние модели SSD поддерживают TRIM, а для старых накопителей нужно прошить контроллер для включения поддержки этой команды (среди операционных систем команду Trim уже поддерживали: Windows 7, Windows Server 2008 R2, Linux 2.6.33, FreeBSD 9.0). Для «старых» ОС необходимо инсталлировать дополнительные драйвера и утилиты. Например, для SSD от Intel существует специальная утилита SSD Toolbox, которая может выполнять процедуру синхронизации с ОС по расписанию. Кроме оптимизации, утилита позволяет выполнять диагностику SSD и просматривать SMART-данные всех накопителей компьютера. С помощью SMART, можно оценить текущую степень износа SSD - параметр E9 отражает оставшееся количество циклов очистки NAND-ячеек в процентах от нормативного значения. Когда величина, уменьшаясь от 100, дойдет до 1, можно ожидать скорое появление "битых" блоков.

Компании Intel и Micron совместными усилиями создали новый тип системы хранения данных, который в одну тысячу раз быстрее самой передовой памяти NAND Flash.

Новый тип памяти, получивший название 3D XPoint, показывает скорости чтения и записи в тысячу раз превышающие скорость обычной памяти NAND, а также обладает высокой степенью прочности и плотности. Новая память в десять раз плотнее чипов NAND и позволяет на той же физической площади сохранять больше данных и при этом потребляет меньше питания. Intel и Micron заявляют, что их новый тип памяти может использоваться как в качестве системной, так и в качестве энергозависимой памяти, то есть, другими словами, ее можно использовать в качестве замены как оперативной RAM-памяти, так и SSD. В настоящий момент компьютеры могут взаимодействовать с новым типом памяти через интерфейс PCI Express, однако Intel говорит, что такой тип подключения не сможет раскрыть весь потенциал скоростей новой памяти, поэтому для максимальной эффективности памяти XPoint придется разработать новую архитектуру материнской платы.

Благодаря новой технологии 3DXpoint (кросс-поинт) ячейка памяти меняет сопротивление для различения между нулем и единицей. Поскольку ячейка памяти Optane не одержит транзистора, плотность хранения данных в памяти Optane превышает в 10 раз превышает показатели NAND Flash. Доступ к индивидуальной ячейке обеспечивает сочетание определенных напряжений на пересекающихся линиях проводников. Аббревиатура 3D введена поскольку ячейки в памяти расположены в несколько слоев.

Уже в 2016 году технология получила широкое применение и уже использовалась как в аналогах флеш-карт, так и в модулях оперативной памяти и жестких дисках. Благодаря новой технологии, компьютерные игры получат мощнейшее развитие, ведь сложные по объему памяти локации и карты будут загружаться мгновенно. Intel заявляет о 1000-кратном превосходстве нового типа памяти, по сравнению с привычными нам флеш-картами и жесткими дисками.

Устройства под брендом Optane будет производить компания Micron с использованием пока 20-нм техпроцесса. В первую очередь будет произведен выпуск 2.5 дюймовых твердотельных накопителей SSD, но также выйдут диски SSD с другими типоразмерами, дополнительно компания выпустит модули оперативной памяти Оптейн DDR4 для серверных платформ Интел. 


Лицензия