Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Универсальные рекомендации по ремонту плат форматеров лазерных принтеров, плат управления МФУ и копиров.

Универсальные рекомендации по ремонту плат форматеров лазерных принтеров, плат управления

МФУ и копиров

В данной статье рассматриваются технологии и методы ремонта системных (главных) плат различного назначения, рассмотрены основные причины возникновения дефектов, даны рекомендации по последовательности действий при поиске и локализации неисправности, рассматриваются меры предосторожности при проведении работ, контролируемые сигналы, компоненты и параметры.  

Какие дефекты и по чьей вине появляются в системных (главных) платах?

Современные лазерные принтеры, цифровые копировальные аппараты, многофункциональные устройства (МФУ) имеют, как правило двухуровневую систему управления состоящую из платы форматера и одной или нескольких плат второго уровня. Платы форматеров (главные платы) как правило являются по своему составу и сложности аналогами системных плат персональных компьютеров. На плате форматера обычно находится достаточно мощный быстродействующий универсальный микропроцессор с тактовой частотой 200-800 МГц. Микросхема процессора, используемая на форматере, обычно является заказной, в качестве ее ядра используется, например, кристалл аналогичный Intel 960, Pentium, или Power PC 405CR и др., кроме того в микросхеме имеется ряд специализированных портов ввода/вывода и др. компоненты характерные для системных плат персональных компьютеров.

Плата форматера предназначена для сложной обработки страниц цифрового изображения, принятого в его локальную оперативную память. Обработка принятого из компьютера изображения может быть сложной (используются очень сложные алгоритмы обработки, обеспечивающие повышенное качество печати, выполняется интел­лектуальный анализ типа линий, автоматически разли­чаются фотографии, текст и рисунки, осуществляется управление размером точки и т. д.

Платы второго уровня - проще и реализуют функции управления исполнительными механизмами и узлами аппаратов, занимаются считыванием состояний с цифровых, аналоговых датчиков, обслуживают клавиатуру и индикаторы пульта управления, т.е. реализуют циклы работы аппаратов по печати страниц.

 Системные платы персональных компьютеров являются наиболее сложным компонентом системного блока, в ней интегрированы мощный микропроцессор, оперативная память, ПЗУ-BIOS, практически все схемы системной логики (микросхемы чипсета), подавляющее большинство контроллеров внешних устройств, схемы мониторинга оборудования и многое другое.

По существующей на данное время статистике наиболее часто в системных (главных) платах встречаются  следующие дефекты:

- отсутствие контакта в разъемных соединениях, в переходных отверстиях платы и микротрещины  в печатных проводниках печатной платы;

- наличие токопроводящей пыли и частиц на контактах сверхбольших чипов, микропроцессоров и вследствие этого неполноценные логические уровни сигналов;

- "уход" параметров транзисторов, резисторов, конденсаторов из-за климатических условий, высыхания и т. д.;

- «пробой» логического входа или выхода питания микросхемы на «землю» или «+» питания, внутренние дефекты в микросхемах из-за замыканий в схемах или из-за статического электричества;

- некорректный код  установок в микросхеме CMOS-памяти из-за отказа батарейки, дефекта микросхемы, некорректных действий пользователей, некорректные установки перемычек (джамперов), испорченная информация в ПЗУ BIOS и флэш-памяти системных плат ПК;

- дефекты кода управляющей программы в ПЗУ плат форматеров, плат контроллеров постоянного тока второго уровня управления копиров и МФУ.                                    

Значительно реже встречаются неисправности сверхбольших чипов и отказы микросхем средней и малой степени интеграции. Дефекты съемных компонентов  системных (главных) плат: модулей памяти, микропроцессора и др., легко определяются и ликвидируются заменой на исправные аналогичные элементы без выпаивания.

Анализ статистических данных по ремонту системных (главных) плат говорит нам, что в 60-70% случаев ремонт этих сложных плат не требует дорогостоящего паяльного оборудования, сложной контрольно-измерительной и диагностической аппаратуры, замены сверхбольших чипов. Но поиск и устранение дефектов  в системных (главных) платах, несмотря  на кажущуюся простоту причин дефектов, требует от специалиста достаточно высокой квалификации, творческого подхода, жесткого соблюдения правил предосторожности, твердого следования детально продуманному плану поиска неисправности.

Почему возникают простые по своей сути дефекты и кто виноват в этом?

Надежность любого изделия определяется надежностью его компонентов и качеством сборки изделия, а большинство фирм, поставляющих компьютеры в нашу страну, используют для их построения дешевые, и зачастую ненадежные комплектующие, применяют в их производстве устаревшие  технологии,  персонал с низкой технологической грамотностью и дисциплиной, чем изначально закладывают в изделие повышенную вероятность отказа. Кроме того, очень часто не соответствующие нормам условия транспортировки, хранения и  эксплуатации на месте использования, являются дополнительными факторами, увеличивающими вероятность отказа изделия. Всем известно, что параметры отечественной сети 220В/50Гц периодически выходят за пределы допустимых значений, а это при отсутствии стабилизаторов напряжения может в ряде случаев привести к отказу электрических и электромеханических узлов аппаратуры. Во многих случаях причиной отказа оборудования являются некорректные или небрежные действия пользователя и обслуживающего персонала. Подключение или отключение устройств, при включенном электропитании, неправильное подключение разъемов и сменных компонентов, недопустимые усилия при замене съемных компонентов и подключении разъемов часто являются причиной отказа интерфейсных цепей устройств, появления микротрещин в печатной плате, отсутствия контакта в разъемах и т.д.  Проводя работы по поиску неисправности и ремонту, специалист получает ничем  неограниченный доступ к электрическим схемам и узлам компьютера. Часто возникает необходимость работы с ними при включенном электропитании, причем его действия в это время определяются только собственными соображениями и планами, а не жестко расписанной производителем аппаратуры технологией и правилами.

При отсутствии необходимой подготовки и квалификации, но при наличии определенной решительности и самоуверенности у сотрудника,  во время проведения ремонтных работ, он может  внести гораздо более серьезные неисправности в аппаратуру, чем были в ней до начала ремонта. Для восстановления устройства после такого “ремонта” может потребоваться значительно больше средств и усилий или придется вовсе отказаться от ремонта из-за экономической нецелесообразности. Поэтому  у ремонтного персонала вычислительной техники , как и у медицинского персонала,  главным правилом при выполнении ремонтных работ является соблюдение требования – «не навреди!»

Методы проведение поиска и локализации неисправности во многом напоминает и работу сотрудников розыскных спецслужб: собирается исходная информация об объекте и проявлении неисправности, проводится ее анализ и сравнение с имеющейся информацией об аналогичных отказах; выдвигаются версии и составляются планы поиска неисправности; последовательно отрабатываются все версии и планы. Часто поиски приводят в “тупик”, что требует выдвижения новых версий и составления новых планов поиска. Поиск неисправности требует активной, внимательной, интеллектуальной работы специалиста и его терпения. Учеными-психологами давно установлено и доказано, что мозг человека функционирует оптимально, его движения корректны только в состоянии «активного спокойствия». Все «аварии», из-за некорректных двигательных действий, и мыслительные «промахи» происходят в состоянии повышенной нервозности и возбуждения, поэтому перед началом работы необходимо создать спокойную, творческую, рабочую обстановку, успокоить свои «нервы» и сосредоточиться на объекте ремонта.

При проведении ремонтных работ необходимо соблюдать требования техники безопасности и меры предосторожности по отношению к объекту ремонта. Наиболее опасным в силу своей незаметности  и большой вероятности является статическое электричество. Рабочее напряжение современных микросхем и чипов составляет 1,5; 2; 2,7; 3,0; 3,3; 5,0; 12 вольт и т.п.  Предельно допустимое напряжение для подавляющего большинства микросхем составляет  6,5 вольт (а то и менее). Человек, в силу своих физиологических возможностей, не может почувствовать статическое напряжение менее 30 вольт. Но зато сам он, не соблюдая  правил  предосторожности, может  незаметно для себя  сгенерировать статическое напряжение до нескольких тысяч вольт, и  вывести из строя микропроцессор, сверхбольшой чип, микросхему памяти и т.д. Поэтому необходимо соблюдать ряд несложных правил и требований снижающих риск появления статического электричества:

 - необходимо всегда работать в одежде, не генерирующей и не накапливающей статического электричества;

 - поверхность рабочего стола должна быть из проводящего антистатического материала, избегайте присутствия в зоне ремонта  материалов генерирующих и накапливающих статические заряды (нейлон, полиэтилен, целлофан, клейкая лента, ковровые покрытия, паркет  и  т. п.);

- инструмент и детали необходимо хранить  в пакетах и футлярах, сделанных из антистатических материалов, не накапливающих статического электричества;

- перед прикосновением  к электронным компонентам ремонтируемой платы руками, «разрядите» свои руки прикосновением к металлическому корпусу блока питания, поддерживайте нормальную влажность в рабочем помещении (нормальное содержание влаги в воздухе способствует «стеканию» статических зарядов и уменьшает вероятность их накопления);

По ряду соображений техники безопасности в реальных условиях ремонта от рекомендации  заземления “браслетами” своих рук и ног  при работе с микросхемами мы  все-таки воздержимся. Безопасным расстоянием  для сотрудников, наблюдающих за ремонтом (для обеспечения защиты от воздействия статического заряда) считается расстояние не менее метра от рабочего стола с ремонтируемым оборудованием. Конечно, можно работать и в менее защищенных от статического заряда условиях, но это повышает вероятность повреждения ремонтируемого изделия статическим электричеством.

Начало работы

Вы получили сложный объект для ремонта, если есть возможность, то желательно получить информацию от «хозяина» объекта об условиях эксплуатации, проявлениях неисправностей, стаже работы, ремонтировался ли «объект» раньше и др. Прежде всего, внимательно осмотрите плату, обращая внимание на наличие загрязнения, на внешние повреждения, на расположение перемычек и джамперов, состояние микропереключателей, соединительных кабелей, на установленные на плате блоки. Зафиксируйте исходную ситуацию, чтобы при необходимости к ней можно было вернуться.  Оцените условия в которых эксплуатировалась системная плата, выясните, были ли попытки отремонтировать ее и, что для этого предпринималось.

Действия до включения электропитания

После того как выполнен детальный осмотр платы оценивается состояние каждого элемента платы по его внешнему виду; реально оцениваются условия эксплуатации компонентов платы – их запыленность, наличие изменений геометрической формы платы, состояние контактов разъемов, нарушения соединений пайкой; проверяется комплектность платы; проверяется правильность установки элементов платы подключаемых через сокеты, "кроватки"; выясняем места и элементы возможно подвергавшиеся ремонту ранее.

Вся полученная информация фиксируется на бумаге, зарисовывается исходное положение перемычек (джамперов) и микропереключателей. С помощью измерительного прибора измеряем сопротивление между контактом «+питания» и «землей» на разъеме электропитания (при прямом и обратном измерении должна быть видна разница измеренного сопротивления в соотношении примерно 3:2). Слишком малое сопротивление свидетельствует о повышенной нагрузке на источник данного напряжения питания из-за отказа (пробоя) транзистора, диода, микросхемы и т. п. Последовательно отключая элементы схемы от цепи электропитания  необходимо найти и заменить «пробитый» компонент схемы. Если в изделии присутствует энергонезависимая память с часами реального времени «запитываемая» от батареи, необходимо убедится в нормальном уровне напряжения батареи CMOS-памяти (должно быть примерно 2,7 - 3,2 вольта) и проконтролировать наличие импульсов генератора (таймера) для часов реального времени.

  Действия после включения электропитания

Выполнив все необходимые действия по обслуживанию платы до включения электропитания (очистка от пыли, правильная установка перемычек, контроль сопротивлений источников питания и напряжения батареи, замена «пробитых» компонентов платы и т.п.) можно установить плату  на ее место в устройстве (в системный блок ПК, в принтер, МФУ). После включения электропитания оцените и зафиксируйте все события в процессе начала работы устройства и ситуацию установившуюся стабильно (сообщения диагностических программ, сообщения выдаваемые на экран, перемещения узлов устройства, состояния индикаторов и т. д.).

При исследовании электрических и электронных схем и выполнении действий по устранению неисправности необходимо соблюдать ряд несложных правил и требований снижающих риск усугубления ситуации:

1. Не позволяйте себе поспешных, непродуманных действий. Не зная причины неисправности, не вносите изменения  наугад в надежде на то, что плата заработает сама собой. Только действуя осторожно, по детально продуманному плану можно обнаружить неисправный элемент. Никогда не вносите более двух изменений одновременно, так как  будет практически невозможно определить источник неисправности.

2. Желательно вести протокол своих действий и записывать результаты поиска по каждой версии (в произвольной форме). Впоследствии внимательный анализ записей может вывести Вас на неисправность или на новую продуктивную версию поиска и определить Ваши дальнейшие действия.

3. Большое значение имеет Ваше правильно организованное рабочее место. Ремонтируемую на рабочем столе системную плату необходимо разместить на изолирующей подставке, которая должна  обеспечить  устойчивое положение системной платы,  возможность подключения и установки внешних адаптеров, соединительных кабелей, подключение блока электропитания, доступ к компонентам платы при их контроле измерительной аппаратурой.

4. При исследованиях схем с помощью осциллографа необходимо обеспечить надежное соединение корпуса осциллографа с корпусом блока электропитания. При использовании высокочастотного осциллографа во избежание повреждения входных цепей осциллографа  необходимо правильно выбирать внешний или внутренний делитель, используйте рекомендуемые инструкцией по эксплуатации активные пробники осциллографа. Подготовьте щупы осциллографа для работы со сверхминиатюрными элементами системной платы, заточите существующие наконечники щупов или используйте специальные наконечники.

      5. Для работы со сверхминиатюрными элементами системной платы используйте в работе специальные очки, оптические линзы с подсветкой или другие приспособления с необходимым коэффициентом увеличения.

Типичные действия при поиске и локализации неисправности сводятся к выдвижению версий поиска, планированию конкретных действий, выполнению запланированных работ,  получению диагностической информации, ее анализу и планированию последующих действий, результатом которых  является получение дополнительной диагностической информации. Используя эту диагностическую информацию можно  уточнить и скорректировать план следующего этапа поиска неисправности. Последовательность этих действий должна вести к сужению области, в которой ведется поиск, и, в конечном счете, к обнаружению места и причины дефекта. Такой алгоритм действий позволяет на каждом витке поиска, за счет анализа, определять дальнейшее направление поиска и непрерывно, целенаправленно вести поиск до желаемого результата.

 


Лицензия