Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 105 из 213      1<< 102 103 104 105 106 107 108>> 213

Блок питания лазерного принтера Canon.

Статья добавлена: 28.05.2019 Категория: Статьи

Блок питания лазерного принтера Canon. Источник лазерного принтера Canon LBP-1120 имеет классический вариант построения для такого типа принтеров, но есть и своя особенность, это применения в качестве управляющей микросхемы специального ШИМ-контроллера. Стоит отметить, что источники на базе этой микросхемы очень часто встречаются и в других лазерных принтерах и МФУ, например от фирмы HP. Конструктивно блок питания принтера расположен на плате управления принтером. На этой же плате расположены высоковольтные источники питания для роликов первичного заряда, проявки и переноса см. рис. 1. Структурная схема блока питания представлена на рис. 2. Блок питания принтера формирует стабилизированные напряжения +24В используемое для питания двигателей, источников высоких напряжений, соленоидов, реле, вентилятора и т.п.; а также +5В и +3.3.В, необходимое для питания микросхем контроллера и форматера, памяти, светодиодов оптопар, датчиков, лазера, интерфейсных цепей и т.д. Рассмотрим работу составных частей БП (см. рис. 3).

Что такое FDE-винчестеры?

Статья добавлена: 03.07.2017 Категория: Статьи

Что такое FDE-винчестеры? FDE-винчестеры (FDE – Full Disc Encryption, диски с полным шифрованием), предназначены для портативных ПК и оснащёны собственной технологией кодирования данных DriveTrust. Эта технология применяется в винчестерах оптимизированных для DVR-плееров и цифровых мультимедийных систем. Главной особенностью созданной инженерами Seagate системы шифрования является тот факт, что она реализована полностью на аппаратном уровне в самом накопителе, благодаря чему не требует для своей работы установку на ПК пользователя какого-либо дополнительного программного обеспечения, а для защиты целого винчестера требуется лишь единожды ввести пароль. Кроме того, получить доступ к зашифрованному диску можно не только по паролю, но и с помощью различных аппаратных средств доступа, таких как сенсоры отпечатков пальцев, смарт-карты и т.п. (последние, разумеется, будут устанавливаться уже самими производителями ноутбуков). Первые модели Momentus FDE.2 поступили в продажу еще в 2007 году. Высокий уровень защиты от несанкционированного доступа к информации на ноутбуках в случае их утраты обеспечивает новая технология Full Disc Encryption (FDE) для жестких дисков, применяемых в ноутбуках. С использованием технологии Full Disc Encryption (FDE) обеспечивается наивысший уровень безопасности данных, чему способствуют также и решения компании SECUDE - TiDoCoMi по технологии управления доступом и инфраструктура программного обеспечения управления безопасностью портативных компьютеров. Жесткие диски автоматически зашифровывают все данные, записанные в ноутбуке, а не отдельные файлы и разделы, упрощая, таким образом, защиту информации. Технология FDE обеспечивает более надежную защиту от атак хакеров и взломов, чем традиционные средства шифрования, выполняя все криптографические операции и основное управление в пределах одного диска. В отличие от альтернативных решений, Momentus FDE представляет собой полное быстрое кодирование данных для минимизации любого влияния на производительность системы, которое позволяет мгновенное удаление всех данных на диске для быстрой переустановки системы или жесткого диска, а также упорядочивает инициализацию и конфигурацию диска. Единое аппаратно-программное решение по обеспечению IT-безопасности, его программное обеспечение сокращает полную стоимость владения и облегчает установку решений по безопасности на ноутбуках, предоставляя возможность дополнительной установки смарт-карт, защитных заглушек, средств биометрической и предзагрузочной идентификации и обеспечивая усовершенствованное ключевое управление, таким образом, упрощая использование мобильных компьютеров с защитой данных.

«Горячее» подключение устройств к шине USB.

Статья добавлена: 03.07.2017 Категория: Статьи

«Горячее» подключение устройств к шине USB. В системе физических соединений устройств USB использована топология "многоярусной звезды ". Центром каждой звезды является хаб (hub), каждый кабельный сегмент соединяет две точки – хаб с другим хабом или с периферийным устройством. Хабы могут каскадироваться, образуя древовидную структуру с поддеревьями. Устройства USB подключаются к хабам. Всего может быть до 127 устройств, причем хаб также считается устройством (практически такое количество узлов будет редко использоваться, а топология будет скорее линейной). По принятой архитектуре USB-cистема должна состоять из одного, управляемого oneрационной системой, хост-контроллера (host controller) интегрированного с корневым концентраторм (хабом), а также из требуемого количества устройств USB. Устройства USB могут являться хабами, периферийными устройствами или их комбинацией. В USB в отличие от других шинных архитектур обеспечивается возможность «горячего» подключения устройств без отключения системы. Можно подключить новое устройство или концентратор, или наоборот, отключить ставшее ненужным оборудование без необходимости перезагрузки системы. При обнаружении на шине нового устройства концентратор оповещает об этом корневой концентратор. Затем система опрашивает вновь подключенное устройство о возможностях и потребностях и конфигурирует его. Вдобавок при этом загружаются необходимые драйверы, так что новым устройством можно пользоваться немедленно. Таким образом USB поддерживает подключение и отключение устройств в процессе работы. Конфигурация устройств шины является постоянным процессом, отслеживающим динамические изменения физической топологии (рис. 1). Все устройства USB подключаются через порты хабов. Хабы определяют подключение и отключение устройств к своим портам и сообщают состояние портов в ответ на запрос от контроллера. Хост разрешает работу порта и адресуется к устройству через канал управления, используя нулевой адрес – USB Default Address. Все устройства адресуются этим адресом при начальном подключении или после сброса.

Графическое ядро Iris Pro Graphics 580 (GT4e).

Статья добавлена: 03.07.2017 Категория: Статьи

Графическое ядро Iris Pro Graphics 580 (GT4e). Iris Pro Graphics 580 – GT4e: 72 исполнительных устройства, 128 Мбайт eDRAM, производительность до 1152 ГФлопс на частоте 1 ГГц. Новое графическое ядро Iris Pro Graphics 580 (GT4e) — имеет 72 потоковых процессора. Вычислительная производительность Iris Pro Graphics 580 составляет более 1,1 Тфлопс (триллиона операций с плавающей точкой в секунду) в зависимости от тактовой частоты. Графический процессор Iris Pro Graphics 580 имеет обновлённый мультимедийный движок, который поддерживает аппаратное декодирование и кодирование Ultra HD-видео с использованием кодеков HEVC и VP9. Современные графические ядра, применяемые в процессорах Broadwell и Skylake и относящиеся к классам Iris и Iris Pro предлагают вполне достаточную для массовых игровых систем производительность. Конечно, здесь имеется в первую очередь способность интеловской интегрированной графики нормально работать в казуальных и несложных в графическом плане сетевых играх. За последние пять лет производительность интегрированной графики выросла в 30 раз. Современные интеловские графические ядра способны предложить весьма впечатляющую теоретическую производительность. В таблице 1 приведена теоретическая мощность распространённых графических решений в сравнении с графикой процессоров Skylake в старших версиях GT4 и GT3.

Ремонт блоков питания принтеров.

Статья добавлена: 01.04.2019 Категория: Статьи

В принтерах применяются импульсные блоки питания, преобразующие переменное напряжение сети в несколько выходных шин питания постоянного тока для различных компонентов принтера см. рис. 1. Блоки питания располагаются внутри принтера на отдельной плате или на плате источников питания вместе с высоковольтными источниками питания для системы создания изображения (узла первичного заряда, узла проявки, узла переноса и т.д.). Силовая часть блока питания чаще других представлена импульсным обратноходовым преобразователем напряжения с управляющей микросхемой или без нее. Регулировка и стабилизация выходных напряжений источника осуществляется методом широтно-импульсной модуляции (ШИМ) и осуществляется, как правило, специализированной микросхемой ШИМ-контроллером на основе сигнала обратной связи. Так как микросхема ШИМ – контроллер включена в первичную цепь блока питания, обратная связь снимаемая с одной или нескольких выходных шин питания подается на микросхему через гальваническую развязку - оптопару. Цепи защиты блока питания от перенапряжения на выходе и повышенного токопотребления или короткого замыкания также реализованы через блокировку работы управляющей микросхемы ШИМ – контроллера. Сигнал блокировки со вторичных цепей блока питания на управляющую микросхему подается также через оптопару. На входе любого импульсного источника питания, имеется цепь входных фильтров, призванная обеспечить защиту от разных проблем первичной сети. Наиболее важными элементами этой части блока питания, которые подлежат проверке на этапе выявления неисправности можно отнести входной предохранитель и варистор. Эти два элемента обеспечивают защиту от короткого замыкания в первичной цепи источника питания и в цепи нагревательного элемента печки , а также и защиту от превышения входного напряжения блока питания. Практически все входные цепи блока питания принтера имеют защиту диодного моста от токового импульса при включении принтера, она обеспечивается терморезистором. Количество выходных шин питания колеблется от одной до трех и все они формируются классическим способом – выпрямлением ЭДС со вторичных обмоток силового трансформатора. Типовым вариантом является формирование на выходе шин +3.3В, +5В и +24В. Назначение напряжений следующее: 1. Шина +5V - используется в качестве дежурного напряжения, а также для питания цифровых, аналоговых схем, и т.д. 2. Шина +3.3V - напряжение питания цифровых микросхем, контроллеров, микросхем на интерфейсной плате, датчика начала строки в блоке лазер-сканер. 3. Шина +24V- напряжение питания для силовых компонентов принтера: двигателей, электромагнитных муфт, соленоидов, источников питания ламп сканеров и т.д.

Функции Z-буфера.

Статья добавлена: 30.06.2017 Категория: Статьи

Функции Z-буфера. В современных видеоадаптерах, в которых графический процессор может выполнять функции ускорения трехмерной графики, встраиваются специальные электронные схемы, которые выполняют растеризацию гораздо быстрее, чем программное обеспечение. Большинство современных наборов микросхем 3D-акселераторов обеспечивают выполнение следующих функций растеризации: - растровое преобразование - определение того, какие пиксели экрана покрываются каждым из примитивов; - обработка полутонов - цветовое наполнение пикселей с плавными цветовыми пере¬ходами между объектами; - образование текстуры - наложение на примитивы двухмерных изображений и поверхностей; - определение видимости поверхностей - определение пикселей, покрываемых ближайшими к зрителю объектами. В трехмерном мире один объект может находиться впереди другого. Обычно световые лучи не проникают через непрозрачные объекты, поэтому мы видим все, что находится впереди, и не видим того, что позади. Когда два объекта перекрываются, нужно выяснить, какой из них находится впереди, чтобы знать, какие пиксели объекта нужно показать на дисплее. Область, в которой пересекаются две фигуры, можно описать, указав для каждого пиксела фигур величину расстояния от него до условного заднего плана. Если дополнить обычную видеопамять картой этих расстояний для каждого пикселя, то будет всегда известно, нужно ли закрашивать конкретный пиксель: если значение расстояния (или значение Z) у пикселя меньше, значит, он позади и его не нужно закрашивать. Эту идею реализовали аппаратно. Решение, состоит в создании параллельно с памятью дисплея другого массива памяти, называемого Z-буфером. Каждый раз при записи пикселя вычисляется его значение Z. При этом записываются только пиксели с большими значениями Z и обновляются расстояния в Z-буфере. Все остальные пикселы игнорируются. Таким образом, в каждой ячейке Z-буфера хранится расстояние по оси Z (вглубь экрана) для рисуемого пиксела, поэтому легко проверить, затенен ли новый записываемый пиксель или нет. Z-буфер требует дополнительной памяти, и, чем большая точность нужна для значений Z, тем больше памяти нужно для запоминания значений Z. Если используется разрешающая способность 640х400 и значения Z в виде 16-разрядных (двухбайтовых) чисел, то нужно иметь 0,5 мегабайта памяти только для Z-буфера. С помощью Z-буфера можно легко решить, какие объекты расположены на переднем плане, но при этом понадобится вдвое больший объем видеопамяти. От разрядности Z-буфера зависит разрешающая способность графического конвейера по глубине. При малой разрядности (на¬пример, 8 бит) для близко расположенных элементов рассчитанные значения Z могут совпасть, в результате картина перекрытий исказится. Большая разрядность буфера требует большого объема памяти, доступного графическому процессору. По нынешним меркам минимальная разрядность Z-буфера — 16 бит, профессиональные графические системы используют 32-битный Z-буфер. Почти все современные 3D-ускорители имеют 24-х или 32-битную Z-буферизацию, что в значительной мере повышает разрешающую способность и, как следствие, качество рендеринга.

Аудит среды.

Статья добавлена: 30.06.2017 Категория: Статьи

Аудит среды. Аудит представляет собой способ сбора информации и мониторинга активности сети, устройств и целых систем. Некоторые виды аудита, например, могут быть разрешены по умолчанию, но множество других функций аудита обычно должно быть включено вручную. Это обеспечивает легкую настройку возможностей мониторинга системы. Аудит обычно применяется для определения брешей в безопасности или подозрительных действий. Однако аудит также важен и для обретения понимания, как про¬исходит доступ к сети, сетевым устройствам и системам. Аудит может применяться для мониторинга успешных и неудачных событий в системе. Политики аудита обычно должны быть включены до начала мониторинга активности. Политики аудита являются основой аудита событий начиная с Windows 2008. В зависимости от установленных политик аудит может потребовать существенного объема ресурсов сервера, не считая тех ресурсов, которые нужны для функционирования сервера. В противном случае это потенциально снизит производительность сервера. Кроме того, сбор большого количества информации годится только в контексте оценки журналов аудита. Другими словами, если записывается большое количество информации и для оценки этих журналов аудита требуются значительные усилия, то основная цель аудита выбрана неэффективно. Поэтому важно затратить некоторое время на правильное планирование аудита системы. Тогда администратор сможет определить, для чего и зачем необходимо выполнять аудит, не создавая при этом больших дополнительных затрат. Политики аудита могут отслеживать возникновение успешных и неудачных событий в среде Windows - то есть успешное или неудачное завершение событий. Ниже перечислены типы событий, для которых возможен такой мониторинг.

Как снизить стоимость ремонта?

Статья добавлена: 30.06.2017 Категория: Статьи

Как снизить стоимость ремонта? Растет объем (и удельная доля стоимости) электронного оборудования в периферийных устройствах компьютеров. Современные лазерные принтеры, цифровые копировальные аппараты, многофункциональные устройства (МФУ) имеют, как правило двухуровневую систему управления состоящую из платы форматера и одной или нескольких плат второго уровня. Во многих случаях для ремонта оборудования, будь оно новое или старое, инженеру не обязательно всегда подробно знать, как оно работает. Часто для выполнения ремонта не требуется досконального знания устройства, подробностей его функционирования, программирования и т. д., но несомненно, очень полезно знать о компьютерных системах как можно больше, и не менее важно хорошо разбираться в цифровой и аналоговой электронике. Цифровая электроника совсем не похожа на аналоговую электронику, отказы цифровых схем порождают новый и необычный круг проблем. Ремонт сложных компонентов, например, платы форматера и других сложных узлов, неквалифицированному персоналу часто не по силам. Но, тем не менее, это вполне реальное и очень интересное дело для специалиста, обладающего определенной квалификацией. Существуют два основных варианта подхода к ремонту компьютера. Один из них требует, чтобы Вы понимали общие принципы работы компьютера, которых обычно достаточно для анализа общих симптомов и нахождения неисправной секции (блока) компьютера. Устранение неисправности на этом уровне обычно происходит заменой неисправного блока или крупного узла компьютера, что приводит к достаточно большим материальным и временным затратам (надо найти нужный для замены блок, оплатить через банк, дождаться когда же его привезут). Ремонт второго типа предполагает наличие у специалиста глубоких теоретических знаний и практических навыков, специалист должен разбираться в схемотехнике, знать принципы его построения и работы, владеть методиками анализа и поиска причин неисправности. Нужно уметь грамотно пользоваться контрольно-измерительными приборами, логическими пробниками, вольтметром и осциллографом. Иначе говоря, знаний и умений должно быть достаточно для анализа электронных схем на уровне электрических сигналов, что и позволит локализовать неисправность на уровне элементарных компонентов электронных плат и узлов компьютера. Устранение неисправности на этом уровне ремонта обходится гораздо дешевле (в 5-20 раз) по сравнению с ремонтом первого типа, и занимает значительно меньше времени (найти нужную микросхему, конденсатор, резистор или диод гораздо проще, оплата в виду небольшой цены может быть произведена наличными деньгами в магазине или сервисном центре). «Объекты» ремонта могут иметь различное функциональное назначение и располагаться в различных конструкциях. Скорость работы принтера и его производительность во многом зависят от блока обработки изображения (форматера данных). Платы форматеров (главные платы) как правило, по своему составу и сложности, являются аналогами системных плат персональных компьютеров. На плате форматера обычно находится достаточно мощный быстродействующий универсальный микропроцессор с высокой тактовой частотой, значительного объема оперативная динамическая память и ПЗУ с управляющей программой. Микросхема процессора, используемая на форматере, обычно является заказной, в качестве ее ядра используется мощный процессор, кроме того, в ней имеется ряд специализированных портов ввода/вывода и других компонентов характерных для системных плат персональных компьютеров. Стоимость плат форматера для достаточно производительных принтеров (особенно для цветной и качественной печати) может составлять от 500 до 1200 долларов, а это значит, что успешный ремонт этих плат может сэкономить крупные суммы денег.

Блоки регистров контроллеров устройств SАТА.

Статья добавлена: 30.06.2017 Категория: Статьи

Блоки регистров контроллеров устройств SАТА. Каждое устройство, подключенное к адаптеру Serial ATA, представляется тремя блоками регистров, два из которых соответствуют традиционным регистрам ATA и называются «теневыми», третий блок является новым. Привязка адресов блоков к адресному пространству хоста стандартом не регламентируется, «теневые» регистры могут располагаться по стандартным адресам ATA. В дисковых системах на Serial ATA кроме двух традиционных блоков регистров (табл. 1) появился и новый блок регистров SCR. В блоке управляющих регистров (табл.1), как и в ATA, используется лишь один (AS для чтения, DC для записи). В блоке командных регистров разрядность регистров SC, SN, CL и СН расширена до 16 бит, назначение младших байтов сохранилось. В режиме LBA старшие байты регистров SN, СL и СН несут биты логического адреса [24:31], [32:39] и [40:47] соответственно. В регистре D/H бит DEV игнорируется (при эмуляции пар устройств на одном канале бит DEV используется для выбора устройства).

Технология РМТ (Photo Multiplier Tube).

Статья добавлена: 30.06.2017 Категория: Статьи

Технология РМТ (Photo Multiplier Tube). Конструкция, принципы построении, а также методы технического обcлуживания, диагностики и ремонта сканера в значительной мере определяются используемыми в нем технологиями сканирования. Технология РМТ (Photo Multiplier Tube) применяется в барабанных сканерах (см. рис. 1). Устройства этого типа обеспечивают очень высокое качество сканирования. Разрешающая способность таких устройств может достигать 12000 dpi; динамический диапазон — более 4,0D; глубина цвета — до 48 бит. Сканирование в таких устройствах выполняется с помощью специального барабана вращающемуся с высокой скоростью и на котором закреплен материал для сканирования. Вращение барабана обеспечивает сканирование строк пикселов в вертикальном направлении, а в рамках одной строки символы считываются за счет перемещения источника и приемника света.

Блок фиксации. Регулировка давления прижимного вала.

Статья добавлена: 29.06.2017 Категория: Статьи

Блок фиксации. Регулировка давления прижимного вала. От качества настройки зависит качество получаемых копий. Как правильно настроить и отрегулировать блок фиксации копировального аппарата, и на что может повлиять его неправильная настройка? Правильно отрегулированный и настроенный аппарат будет долго, надежно и качественно работать. На этапе закрепления изображения бумага с «незакрепленной копией» поступает в блок фиксации изображения. Обычно он состоит из двух валов. Верхний вал покрыт непригораемым слоем, обычно тефлоном. Этот вал пустой внутри, в нем находится нагревательный элемент, например, подвешена галогеновая лампа мощностью около 1000 Вт, которая нагревает вал до температуры около 200°С. Снизу к нему сильно прижат другой вал, сделанный из жаростойкой силиконовой резины. Бумага направляется как раз в то место, где валы сжимаются. Это место называется «захват». Валы вращаются, и бумага проходит между сжатыми валами. Под влиянием нагрева и давления тонер плавится и впитывается в волокна бумаги. Когда бумага покидает узел закрепления, жидкий тонер остывает и твердеет, оставляя прочное изображение. Итак, фиксация изображения в печатающих аппаратах осуществляется температурой и давлением. Более важным фактором, влияющим на качество закрепления тонер-порошка, несомненно, является температура, однако нельзя сбрасывать со счетов и давление, создаваемое прижимным резиновым роликом. Рассмотрим проблемы, связанные с неправильной установкой силы давления в печке копировального аппарата. Если давление, создаваемое резиновым прижимным валом слишком мало, то: - наблюдается плохое качество закрепления изображения, порошок осыпается с листа (особенно это проявляется, если провести рукой по бумаге); - происходит периодическое замятие листа бумаги в блоке фиксации (из-за малого давления лист проскальзывает, скорость его подачи замедляется, и система контроля за прохождением листа определяет его застревание). Слишком сильное давление, создаваемое резиновым валом приводит к проблемам другого рода: - бумага начинает "морщиться" и закручиваться (бумага может морщиться и из-за изношенных валов фьюзера, а так же по следующим причинам: изношены вкладыши или подшипники; повреждены или отсутствуют пружины узла закрепления); - происходит периодическое замятие листа бумаги в блоке фиксации; - наблюдается достаточно частое наматывание листа бумаги на нагревательный вал; - создается большая нагрузка на подшипники валов печки, что приводит к их быстрому износу; - наблюдается более быстрый износ прижимных резиновых валов. Кроме того, прижим резинового вала может быть неравномерным, т.е. быть достаточно сильным с одной стороны вала и слишком слабым с другой. Это приведет к возникновению следующих проблем:

Пять основных функций систем электронной почты.

Статья добавлена: 29.06.2017 Категория: Статьи

Пять основных функций систем электронной почты. Рассмотрим возможности и организацию систем электронной почты. Обычно они состоят из двух подсистем: пользовательских агентов, позволяющих пользователям читать и отправлять электронную почту, и агентов передачи сообщений, пересылающих сообщения от отправителя к получателю. Пользовательские агенты представляют собой локальные программы, предоставляющие различные методы взаимодействия пользователя с почтовой системой. Эти методы (или интерфейсы) могут быть командными, графическими или основанными на меню. Агенты передачи сообщений обычно являются системными демонами, работающими в фоновом режиме и перемещающими электронную почту по системе. Обычно системами электронной почты поддерживаются следующие пять основных функций:

Стр. 105 из 213      1<< 102 103 104 105 106 107 108>> 213

Лицензия