Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 33 из 213      1<< 30 31 32 33 34 35 36>> 213

Монтаж видеостен.

Статья добавлена: 24.08.2020 Категория: Статьи

Монтаж видеостен. Видеостена состоит из трех основных узлов: отображающих экранов, крепежных кронштейнов и видеопроцессора. Разнообразие и взаимозаменяемость этих частей позволяет быстро воплощать самые смелые дизайнерские решения из стандартных комплектующих. Особые требования выдвигаются к кронштейнам для видеостен, как по прочности так и по обеспечению необходимого функционала. Каждый элемент видеостены должен быть в простом и удобном доступе для калибровки, обслуживания или замены. Чаще всего видеостены монтируют в поверхность видеостены или разделяют ими зоны в конференц-залах. Настенные или подвесные кронштейны предназначены для стационарного размещения видеостены, они позволяют точно отрегулировать взаимное расположение ЖК панелей для минимизации стыковых швов, а также выдержать общий угол наклона чтобы избежать искажения изображения на отдельных участках видеостены. Типичный пример - крепления типа push-and-pull, когда экран выдвигается, после нажатия на него. Затем панель можно легко снять, без демонтажа всей видеостены. Например, профессиональное настенное крепление для видеостены под панель, Pop-In Pop-Out. Макс. нагрузка 50 кг. Уникальный механизм упрощенного крепления и регулировочного выравнивания панели и позволяет одним простым нажатием на неисправную панель выдвинуть ее вперед и осуществлять экстренную замену неисправной панели, не разбирая всю конструкцию видеостены. Мобильные стойки используются в тех случаях, когда видеостена поочередно используется в нескольких конференц-залах или для выездных презентаций, пресс-конференций. Бытовые кронштейны крепления не имеют возможности точно отрегулировать взаимное расположение ЖК-панелей и избежать ситуации, в которой масса верхнего ряда панелей будет давить на нижний ряд. Некоторые модели мониторов для видеостен имеют встроенные крепления, позволяющие легко соединять мониторы друг с другом в видеостену для напольной установки без дополнительного каркаса. Сам каркас является несущей конструкцией и крепится на пол, стену или потолок. Монтаж видеостен производится в несколько этапов:

NVIDIA . Архитектура Turing.

Статья добавлена: 21.08.2020 Категория: Статьи

NVIDIA . Архитектура Turing. В августе 2018 года NVIDIA представила новую графическую архитектуру Turing и первые три продукта, которые будут её использовать. NVIDIA вначале представила профессиональные ускорители Quadro для рабочих станций. Представители нового семейства Quadro RTX — 8000, 6000 и 5000 — это самые быстрые видеокарты NVIDIA для рабочих станций, и они должны были выйти на рынок в последнем квартале этого года. Архитектура Turing представляет собой эволюцию Volta, которая взяла всё, что сделало чип GV100 столь быстрым, и развила эти новшества. Для пользователей, занимающихся профессиональной визуализацией (ProViz), главная новость заключалась в том, что карты поддерживают аппаратное ускорение трассировки лучей благодаря сочетанию новых ядер NVIDIA RT и тензорных ядер из Volta. Связку этих вычислительных блоков можно использовать для ускорения трассировки лучей, а затем задействовать дополнительные уловки постобработки, чтобы сократить объём работы, необходимой для создания фотореалистичного изображения. Новые графические процессоры и основанные на них карты Quadro также были первыми продуктами NVIDIA, которые получили видеопамять стандарта GDDR6 (до 48 Гбайт, т. е. вдвое больше, чем в Quadro P6000) и одновременно значительно увеличили полосу пропускания. NVIDIA также включила поддержку собственной технологии межсетевого когерентного соединения NVLink, который позволит устанавливать карты Quadro RTX парами и обмениваться буферной памятью кадров. NVLink не так хорош, как локальная видеопамять, но с пропускной способностью в 100 Гбайт/с между двумя картами в несколько раз превосходит показатели интерфейса PCIe 3.0. Новые решения NVIDIA очень сильно нацелены на отрасль визуальных эффектов (например, производство фильмов и телесериалов), так как последние являются одними из самых требовательных заказчиков с точки зрения производительности и обладают крупными финансами. Конечно, NVIDIA никогда не была чужда этому рынку, но с появлением аппаратного ускорения трассировки лучей её продукты становятся ещё более востребованными в области CG. NVIDIA активно трудится, чтобы предоставить потенциальным клиентам и готовое ПО, умеющее задействовать преимущества её новых GPU и технологии RTX. Хотя речь шла только о первых шагах в этой области, компания уже тогда заручилась поддержкой таких влиятельных компаний, как Autodesk, Adobe, Chaos Group, Dassault Systèmes и, конечно же, Epic Games (среди прочих), чтобы поддержать технологию аппаратной трассировки лучей в том или ином виде.

Принципы работы и регулировка скорости вращения электродвигателей (ликбез).

Статья добавлена: 20.08.2020 Категория: Статьи

Принципы работы и регулировка скорости вращения электродвигателей (ликбез). В электродвигателе ток подается на внутреннюю катушку для генерации магнитного поля, отталкивающее усилие которого используется для вращения ротора. Скорость вращения двигателя определяется с помощью оптического кодировщика, или кодировщика вращения. В оптическом кодировщике между фотодиодом и светодиодом устанавливается диск с прорезями, и скорость вращения определяется по частоте прерывания света от светодиода. В кодировщике вращения скорость двигателя определяется магнитным датчиком, с элементом Холла. В системах, не имеющих вращательного кодировщика, вместо него используются датчики позиции. Система регулирования скорости вращения двигателя заключается в следующем. В двигателях постоянного тока скорость меняется варьированием питающего напряжения. В двигателях переменного тока скорость меняется варьированием частоты (f), посредством преобразователя частоты. Число оборотов высчитывается по следующей формуле: N = (120 x f)/P, где N — число оборотов, f — частота, Р — фаза. Для регулировки скорости вращения двигателей переменного тока применяются следующие системы регулировок:

Драйверы бесколлекторных двигателей.

Статья добавлена: 20.08.2020 Категория: Статьи

Драйверы бесколлекторных двигателей. Бесколлекторный электродвигатель (прямоприводной электродвигатель постоянного тока, вентильный двигатель, электронный двигатель) применяется там, где требуется постоянная, высокая и стабильная скорость вращения (приводы механизмов копиров и лазерных принтеров, гибких дисках, вентиляторах и т. д.). Этот тип двигателя характеризуется следующими преимуществами: малая неравномерность мгновенной скорости вращения; низкий уровень акустических шумов; небольшие габариты, масса, потребляемая мощность; высокая надежность; низкая стоимость. Для управления бесколлекторными двигателями применяются специальные микросхемы - драйверы двигателя. Эти микросхемы выполняют следующие функции: - усиление и обработка сигналов с датчиков положения ротора; - усиление и обработка сигнала от датчика частоты вращения; - формирование сигналов коммутации обмоток статора; - стабилизация частоты вращения. Условно микросхемы драйверов можно разделить на мощные и маломощные. У мощных - обмотки статора подключаются непосредственно к выводам микросхемы и в качестве примера такого драйвера можно привести микросхему AN8245K (рис. 1). У маломощных - двигатель подключается через транзисторные усилительные ключи, например микросхема AN8261 (рис. 2). На вход микросхемы подаются сигналы от датчиков положения ротора и от датчика частоты вращения. В большинстве микросхем имеется входной сигнал START/STOP для включения и выключения двигателя. Так как микросхема поддерживает скорость вращения стабильной, то сигнал от датчика скорости вращения сравнивается с сигналом опорной частоты. Сигал опорной частоты представляет собой синусоидальное напряжение, формируемое либо кварцевым (емкостным) резонатором, либо ведущей микросхемой (например микропроцессором). Сигнал частоты вращения обычно обозначается FG. Имеются исключительно ведомые драйверы двигателей, которые не стабилизируют частоту вращения, а работают с частотой, задаваемой ведущей схемой, поэтому такие драйверы просто усиливают сигнал датчика скорости вращения и выдают его на ведущую микросхему и, кроме того, они не имеют входов опорной частоты.

ШИМ контроллер - микросхема КА3511.

Статья добавлена: 19.08.2020 Категория: Статьи

ШИМ контроллер - микросхема КА3511. Микросхема KA3511 - это улучшенный ШИМ контроллер со встроенными вспомогательными схемами предназначенный для применения в блоках питания персональных компьютеров стандарта ATX. Производится компанией FAIRCHILD, другая маркировка AN4003. Микросхема содержит ряд схем которые позволяют быстро и точно стабилизировать выходные напряжения, а также выполнять функции защиты. Реализованы защита от перенапряжения на выходе блока питания и защита от понижения напряжения. Присутствует источник опорного напряжения, секция для удаленного управления микросхемой и т. д. Назначение выводов микросхемы представлено в таблице 1. Описание: • Полный PWM контроль и защита цепей • Минимум внешних элементов • Точность установки напряжения 2% • Работа в двухтактном режиме • Выходной втекающий ток каждого выхода …..200мА • Регулируемая величина мёртвого времени • Возможность мягкого запуска • Встроенная схема подавления сдвоенных импульсов • Встроенная защита превышения напряжений 3.3V / 5V / 12V • Встроенная защита понижения напряжений 3.3V / 5V / 12V • Дополнительный переменный канал защиты (PT), настраивается разработчиком. • Внешнее включение/выключение (PS-ON) • Просто организуемая синхронизация • Генератор сигнала Power good • 22-контактный двухрядный корпус (DIP).

Причины наших болезней и страданий (ликбез).

Статья добавлена: 19.08.2020 Категория: Статьи

Причины наших болезней и страданий (ликбез). Болезни и страдания - общий удел всех, приходящих в этот мир, - к такому выводу неизбежно приходили все философы и мыслители мира, это объясняет и христианство, хотя люди предпочитают искать ложное, но более приятное для себя решение, уподобляясь больному, который вместо горького, но спасительного для него лекарства ест конфеты. Причины наших болезней и страданий могут быть самыми разными, вплоть до человеческой самонадеянности в познании мира (представьте себе человека, взбирающегося по высокой отвесной скале без страховки или погружающегося на неизвестную ему глубину без должных мер безопасности). Но суть постигающих человека несчастий одна – его нравственное и интеллектуальное несовершенство, которое отражается в его мыслях и поступках. Изобретенные им пути эволюции еще очень далеки от совершенства, а иногда просто ведут к деградации. Преимущество человека в его постоянном мышлении, а мышление большинства людей до сих пор весьма примитивно. Человек или творит или разрушает. Самонадеянность, неумение и нежелание следовать веками выработанным общечеловеческим принципам, зависть и мстительность - вот источники человеческих страданий, следствие которых - поврежденность человеческой природы. В основе негативных для здоровья поступков всегда лежит явная или скрытая страсть. К сожалению, человек часто сам не замечает, например, как еда ради утоления чувства голода, переходит в поглощение пищи ради удовольствия, и человек ест не потому, что хочет, а потому, что еще может съесть. Большинство людей по себе знает, какое бессилие и опустошение испытывает человек после приступа гнева. И это еще самые слабые симптомы нездоровья. А часто бывает, что после крупной ссоры не обходится без валидола, нитроглицерина, а то и вызова «неотложки» и инфаркта («глупца убивает гневливость, а несмышленого губит раздражительность»). Человек обычно сам порождает для себя худшее и, возможно, непоправимое зло. Конечно, болезни могут быть вызваны и процессами естественного старения. Православная религия говорит, что тело человеческое тяготеет к земле и хочет смешаться с прахом, и только «жизненная сила души» поддерживает форму плоти, поэтому стоит ли растрачивать «душу» на ссоры и обиды (проще говоря, нервные клетки не восстанавливаются). Часто и обычные люди говорят, что болезнь дается человеку для того, чтобы он осознал «свой грех» раскаялся и исправился. Говорят, чтобы остановить родителей на их «неправедном пути», болезни посылаются их детям, чтобы через их скорби вразумить и облагородить «грубое родительское сердце», или страдание посылается во искупление греха, а иногда - для того чтобы человек «утвердился в добродетели». Древние философы считали, что иногда болезнь посылается, чтобы направить человека по предназначенному ему пути и уберечь от нежелательных для него поступков (например, болезнь иногда помогает умерить «живость характера» мужчины или женщины).

UEFI- ПЗУ. Микросхемы SpiFlash памяти с интерфейсами SPI, Dual-SPI, Quad-SPI, QPI-SPI.

Статья добавлена: 19.08.2020 Категория: Статьи

UEFI- ПЗУ. Микросхемы SpiFlash памяти с интерфейсами SPI, Dual-SPI, Quad-SPI, QPI-SPI. Существенным недостатком использования ПЗУ была и остается их низкая производительность. Ее помогает обойти только использование «теневой памяти» (Shadow RAM) в которую для ускорения доступа копируется BIOS (а теперь и UEFI). Поэтому появилась идея попытаться выполнить старт персональной платформы, полностью отказавшись от использования оперативной памяти. Возможности современных реализаций флеш-памяти рассмотрены далее на примере чипа W25Q64FV, используемого для хранения кода UEFI BIOS. Компания Winbond, разработавшая этот чип, позиционирует его как устройство, способное выполнять программы непосредственно из исходного носителя. Данная технология получила название Execute In Place (XIP) и по идее должна заменить режим Shadow RAM.

Изобретатель технологии для лазерных принтеров и копиров.

Статья добавлена: 18.08.2020 Категория: Статьи

Изобретатель технологии для лазерных принтеров и копиров. Cухой электростатический фото-копировальный процесс был изобретен и запатентован в 1935 году (Честер Ф. Карлсон (1906-1968)), когда все остальные способы тиражирования копий были настолько несовершенны, что делопроизводство практически полностью велось методом перепечатки документов через копирку. Такое положение, когда деятельность, связанная с производством многочисленных копий, превращалась в тяжелый монотонный и грязный процесс, и стимулировало первооткрывателя сухого электростатического переноса Честера Ф. Карлсона взяться за создание инженерной системы, которая могла бы производить копии быстро, дешево, качественно, просто. Честер Карлсон получил в 1930 году степень бакалавра физики в Калифорнийском технологическом институте. Проработав незначительное время в Bell Telephone Company, он устроился в патентный отдел нью-йоркской электротехнической компании P.R.Mallory Company, где и столкнулся впервые с проблемой изготовления копий. Карлсон понял, насколько велика потребность в простом и дешевом средстве производства высококачественных копий, и решил посвятить решению этой проблемы всё свое свободное время. Начиная с 1934 года он ознакомился практически со всеми материалами того времени, так или иначе относившимися к фотографическому и печатному процессам, и его внимание привлекли приводившиеся в одной из публикаций сведения о том, что электропроводимость определенных материалов меняется под воздействием света. Этот принцип он и решил положить в основу своей разработки. Лишь после долгих экспериментов, занявших четыре года, Карлсон наконец добился своего и сделал первую в истории сухую фотокопию. Через год он получил первый из многочисленных патентов на свое изобретение, но до создания копировального аппарата массового применения было еще далеко. Еще четыре года Карлсон потратил на тщетные попытки заинтересовать своим изобретением производителей оборудования. То, что было очевидным для рядового клерка, в глазах руководителей компаний выглядело сомнительным. Более двадцати фирм, в том числе IBM, Remington и General Electric, ответили на его предложение отказом. Наконец ему удалось уговорить некоммерческую организацию Bettell Memorial Institute, занимавшуюся научными изысканиями, субсидировать его дальнейшие работы над усовершенствованием нового процесса. В 1947 году фирма Haloid Company, обратила внимание на работы Карлсона и перекупила права на использование его патентов. Изобретенному Карлсоном процессу сухого электростатического переноса изображения дали выразительное торговое название - термин ксерография, который образован от двух греческих корней: xeros (сухой) и wgraphein (писать). Термин дал впоследствии имя и самой компании, которая сначала стала называться Haloid Xerox, затем Xerox Corporation и наконец, сравнительно недавно, The Document Company Xerox.

Развитие интерфейса LVDS (LDI).

Статья добавлена: 18.08.2020 Категория: Статьи

Развитие интерфейса LVDS (LDI). Для увеличения пропускной способности интерфейса LVDS, компания разработчик (National Semiconductor) расширила интерфейс LVDS и удвоила количество дифференциальных пар, используемых для передачи данных, т.е. теперь их стало восемь (см. рис. 1). Это расширение получило название LDI (LVDS Display Interface). В принципе, интерфейс LVDS может использоваться для передачи любых цифровых данных, о чем говорит широкое применение LVDS в телекоммуникационной отрасли. Однако, все-таки, наибольшее распространение он получил именно как дисплейный интерфейс. Кроме того, в спецификации LDI улучшен баланс линий по постоянному току за счет введения избыточного кодирования, а стробирование производится каждым фронтом такового сигнала (что позволяет вдвое повысить объем передаваемых данных без увеличения тактовой частоты). LDI поддерживает скорость передачи данных до 772 МГц. В документации данная спецификация встречается также и под наименованием OpenLDFM, а у отечественных специалистов отклик в душе нашел термин "двухканальный LVDS".

Идеология ремонта компьютерной техники. Информация для размышления.

Статья добавлена: 17.08.2020 Категория: Статьи

Идеология ремонта компьютерной техники. Информация для размышления. Замена микросхемы, устранение короткого замыкания, восстановление разрыва проводника, восстановление испорченной информации в ПЗУ BIOS или на поверхности магнитного диска накопителя являются самой простой частью работы по устранению неисправности компьютера. Главная проблема при ремонте компьютера – это поиск причины и локализация неисправности, так как для этого требуются достаточно глубокие знания и понимание процессов происходящих в процессе работы компьютера. Компьютерная индустрия и компьютерные сетевые технологии стали крупнейшим бизнесом в мире, но тем не менее рынок персональных компьютеров продолжает постоянно расширяться. Значительно выросла мощность компьютерных систем, появились многоядерные процессоры, значительно расширились функции микросхем чипсетов, возросла надежность компонентов компьютера и всей системы. Несмотря на все достоинства новых компьютеров, их ремонт оказался намного сложнее, чем ремонт компьютеров предыдущих поколений. Появилось много новых типов корпусов микросхем, в том числе рассчитанных на поверхностный монтаж, применяются новые сверхбыстродействующие процессоры. Появилось множество новых чипсетов, с очень высокой степенью интеграции схем в кристалле, повысилась частота синхронизации, возросла емкость и быстродействие памяти. Появилось множество разного назначения и производительности интерфейсов и т. д. Конечно, во многих случаях для ремонта оборудования, будь оно новое или старое, инженеру не обязательно всегда подробно знать, как оно работает. Часто для выполнения ремонта не требуется досконального знания устройства, подробностей его функционирования, программирования и т. д., но несомненно, очень полезно знать о компьютерных системах как можно больше, и не менее важно хорошо разбираться в цифровой и аналоговой электронике. Цифровая электроника совсем не похожа на аналоговую электронику, отказы цифровых схем порождают новый и необычный круг проблем. Существуют два основных варианта подхода к ремонту компьютера. Один из них требует, чтобы Вы понимали общие принципы работы компьютера, которых обычно достаточно для анализа общих симптомов и нахождения неисправной секции (блока) компьютера. Устранение неисправности на этом уровне обычно происходит заменой неисправного блока или крупного узла компьютера, что приводит к достаточно большим материальным и временным затратам (надо найти нужный для замены блок, оплатить через банк, дождаться когда же его привезут). Ремонт второго типа предполагает наличие у специалиста глубоких теоретических знаний и практических навыков, специалист должен разбираться в схемотехнике компьютера, знать принципы его построения и работы, владеть методиками анализа и поиска причин неисправности. Нужно уметь грамотно пользоваться контрольно-измерительными приборами, логическими пробниками, вольтметром и осциллографом. Иначе говоря, знаний и умений должно быть достаточно для анализа электронных схем на уровне электрических сигналов, что и позволит локализовать неисправность на уровне элементарных компонентов электронных плат и узлов компьютера. Устранение неисправности на этом уровне ремонта обходится гораздо дешевле (в 5-20 раз) по сравнению с ремонтом первого типа, и занимает значительно меньше времени (найти нужную микросхему, конденсатор, резистор или диод гораздо проще, оплата в виду небольшой цены может быть произведена наличными деньгами в магазине или сервисном центре).

Обращаемся с ноутбуком бережно и аккуратно.

Статья добавлена: 17.08.2020 Категория: Статьи

Обращаемся с ноутбуком бережно и аккуратно. Подавляющее большинство наиболее часто встречающихся проблем, с которыми пользователи ноутбуков обращаются в сервисный центр, происходят по вине пользователя, поэтому надо сделать из данной статьи правильные выводы и обращаться с ноутбуком как можно более бережно и аккуратно. Ноутбуки совершенствуются, а пользователи — нет. Причины, типичные проблемы и неисправности остаются, к сожалению, прежними. Итак, рассмотрим далее своего рода «хит-парад» типичных проблем и неисправностей, с которыми владельцы ноутбуков приходят в сервисный центр. На первом месте, причём со значительным отрывом от всех остальных поломок, находится довольно банальная неприятность – залитая жидкостью (чаем, кофе, пивом, коньяком и так далее) клавиатура. Мораль проста – ни в коем случае не ставьте чашку/кружку/рюмку рядом с ноутбуком, иначе рано или поздно кто-нибудь (не обязательно вы), не рассчитав движение, опрокинет некстати подвернувшийся под руку сосуд, и обращения в сервис-центр не избежать. Второе место занимают неисправности клавиатуры (обычно отваливаются «шапки» клавиш). Это может быть следствием как излишних усилий, прилагаемых пользователем, так и не слишком качественных компонентов ноутбука. Так или иначе, обращатся с клавиатурой нужно по возможности аккуратно, а это позволит сэкономить время и деньги. На третьем месте – выход из строя блоков питания и повреждения экрана ноутбуков. Выход из строя блока питания - тоже довольно распространённая проблема, обращающихся в сервисный центр по этой причине достаточно много. К сожалению, от пользователя здесь мало что зависит – вина практически полностью лежит на производителях блоков питания. Разбить экран у ноутбука, может показаться, что сделать это достаточно сложно, но как показывает практика, возможны множество ситуаций, в которых повредить экран у ноутбука легче лёгкого. Например: положили ручку на клавиатуру и закрыли крышку; уронили, случайно наступили ногой или сели на край стола, а под бумагами оказался ноутбук и т. д. Прочие популярные проблемы. В продолжение «хит-парада» дефектов отметим остальные, наиболее часто встречающиеся проблемы, возникающие в процессе эксплуатации портативных компьютеров:

Особенности функционирования HDD (ликбез).

Статья добавлена: 17.08.2020 Категория: Статьи

Особенности функционирования HDD (ликбез). Современный винчестер является сложным устройством со встроенными микропроцессорами (микроконтроллерами), Контроллер винчестера, расположенный на плате электроники накопителя, отрабатывает команды, поступающие в его программно-доступные регистры из внешнего интерфейса. При подаче питания и по сигналу аппаратного сброса контроллер выполняет процедуру самодиагностирования, сначала проверяя собственное оборудование (ОЗУ, ПЗУ, регистры), а затем и остальные блоки. Далее инициируется запуск шпиндельного двигателя, и когда он наберет номинальные обороты, дается управление на вывод головок из зоны парковки и начинается управление их перемещением с помощью сервосистемы. Микроконтроллер загружает со служебных треков диска необходимую ему управляющую информацию. С диска считывается таблица трансляции секторов, списки дефектных блоков, паспорт диска и часть программ микроконтроллера. Для повышения надежности служебная информация обычно записывается с несколькими копиями, поскольку невозможность ее считывания приведет к потере работоспособности устройства. Служебная информация может храниться и в энергонезависимой электронной памяти EEPROM или флэш-памяти. На основании служебной информации контроллер конфигурируется под характеристики конкретного гермоблока жесткого диска, с которым он работает (определяет списки рабочих головок, число цилиндров, число секторов в треках каждой зоны и т, п.). Обычно один и тот же тип блока электроники может использоваться для ряда моделей винчестеров, отличающихся числом рабочих поверхностей, причем физически у них в «пакете» может быть даже одно число дисков, но не все их поверхности работоспособны и используются. Обычно у таких накопителей может совпадать и «микропрограммное обеспечение» записанное в ПЗУ или флэш-памяти. После успешного завершения конфигурирования, подсистема жесткого диска становится готова к исполнению команд, поступающих по внешнему интерфейсу. Теперь винчестер способен предъявить паспорт диска (набор данных, описывающих все внешне доступные возможности накопителя). Команды, поступающие в контроллер диска через интерфейс, включают операции чтения, записи, верификации секторов, поиска и некоторые вспомогательные операции. Все эти команды работают с блоками данных адресуемых секторов, что подразумевает наличие низкоуровнего формата диска. Так как во многих современных дисках используется зонная запись (с различным числом секторов на треке), то при получении команды внутренний микроконтроллер выполняет трансляцию внешнего адреса запроса, поступившего по интерфейсу, в адреса реальных секторов, расположенных на реальных поверхностях носителя. Трансляция выполняется по таблицам, загруженным в ОЗУ микроконтроллера, учитывающим текущую внешнюю (логическую) геометрию диска, размеры зон, а также переназначение физических секторов, обеспечивающее обход дефектных участков поверхностей. Со временем, хранение данных на магнитном носителе всегда сопровождается появлением «сбоев», причин у которых может быть множество.

Стр. 33 из 213      1<< 30 31 32 33 34 35 36>> 213

Лицензия