Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 95 из 213      1<< 92 93 94 95 96 97 98>> 213

Общие принципы организации вывода на лазерные принтеры (ликбез).

Статья добавлена: 14.12.2017 Категория: Статьи

Общие принципы организации вывода на лазерные принтеры (ликбез). Лазерный принтер по своей натуре растровое страничное устройство, поэтому, в простейшем случае, поток данных, готовых к печати, должен содержать лишь перечисление координат всех точек, подлежащих закрашиванию. Но даже если исходный документ представлен в формате bitmap, далеко не всегда его можно использовать «как есть», и перенести изображение на бумагу «точка в точку» едва ли получится. Его, как правило и как минимум, придется пересчитать в другое разрешение (масштабировать). Типовой процесс печати документа на лазерном принтере состоит из следующих этапов: подключение; обработка данных; форматирование; растеризация; лазерное сканирование; наложение тонера; закрепление тонера. Приблизительно такая последовательность действий выполняется большинством лазерных принтеров. Массовые модели принтеров интенсивно используют в процессе печати компьютер, а более дорогие и совершенные модели большую часть операций выполняют с помощью собственного встроенного аппаратного и программного обеспечения. При подключении компьютера к принтеру задание печати отправляется на принтер (через интерфейс). Поток данных может быть двунаправленным, т.е. и принтер может посылать компьютеру сигналы, которые информируют его о приостановке или продолжении передачи потока данных. В принтере обычно установлен объем памяти намного меньший, чем объем задания печати. При переполнении буфера принтер сообщает компьютеру о приостановке передачи данных. Как только страница будет напечатана, принтер продолжает считывать данные из буфера и информирует компьютер о возобновлении передачи. Этот процесс называется синхронизацией (handshaking). Для нее используется специальный протокол. Для хранения данных задания печати используется память принтера, а если ее недостаточно, то необходимо добавить дополнительные модули. Некоторые модели принтеров оснащаются встроенным жестким диском для хранения данных печати и коллекций шрифтов. Процесс временного хранения заданий перед их печатью называется спулингом печати (print spooling). Современные принтеры обладают дополнительными коммуникационными возможностями, позволяя пользователю с помощью программного обеспечения осведомляться о состоянии принтера, конфигурировать параметры, которые ранее можно было установить только с помощью пульта управления на принтере. После загрузки данных в память принтера его встроенный микропроцессор начинает обработку данных (начинается процесс интерпретации кода ). Часть принтера выполняющая обработку данных называется контроллером или интерпретатором и включает программную поддержку языка (или языков) описания страниц. Вначале интерпретатор из поступивших данных выделяет управляющие команды и содержимое документа. Процессор принтера считывает код и выполняет команды, являющиеся частью процесса форматирования, а затем выполняет другие инструкции по конфигурации принтера (например, выбор лотка с бумагой, односторонняя или двухсторонняя печать и т.д.).

Cпецификация на протоколы доступа к накопителям SSD, подключенным к шине PCI Express.

Статья добавлена: 14.12.2017 Категория: Статьи

Cпецификация на протоколы доступа к накопителям SSD, подключенным к шине PCI Express. NVM Express, NVMe, NVMHCI (от англ.Non-Volatile Memory Host Controller Interface Specification) — спецификация на протоколы доступа к твердотельным накопителям (SSD), подключенным по шине PCI Express. "NVM" в названии спецификации обозначает энергонезависимую память, в качестве которой в SSD пока повсеместно используется флеш-память типа NAND. Логический интерфейс NVM Express был разработан с нуля, с учетом низких задержек и высокого параллелизма твердотельных накопителей с интерфейсом PCI Express, а также широкой распространенности многоядерных процессоров. NVMe позволяет повысить производительность за счет более полного использования параллелизма устройств и программного обеспечения. Накопители, использующие NVM Express, могут представлять собой полноразмерные карты расширения PCI Express либо устройства SATA Express. Спецификация M.2 (ранее известная как NGFF) для компактных накопителей также поддерживает NVM Express в качестве одного из логических интерфейсов. В середине-конце 2000-х многие SSD-накопители еще использовали компьютерные шины SATA, SASили Fibre Channel для взаимодействия с компьютером. На массовом рынке SSD чаще всего использовали интерфейс SATA, разработанный для подключения жестких дисков форм-факторов 3,5 и 2,5 дюйма. Однако SATA часто ограничивал возможности развития SSD, в частности, максимальную скорость передачи данных. Высокопроизводительные SSD изготавливались с интерфейсом PCI Express и ранее, однако они использовали нестандартные логические интерфейсы, либо применяли многоканальные SATA-/SAS-контроллеры, к которым на той же плате подключалось несколько SSD-контроллеров. Путем стандартизации интерфейсов SSD можно было бы сократить количество драйверов для операционных систем, производителям SSD больше не пришлось бы отвлекать ресурсы на создание и отладку драйверов. Подобным образом принятие спецификаций USB mass storage позволило создать большое разнообразие USB-флеш-накопителей, которые смогли работать с любыми компьютерами, не требуя оригинальных драйверов для каждой модели. Первые подробности о новом стандарте доступа к энергонезависимой памяти появились на Intel Developer Forumв еще в 2007 году, где NVMHCI был указан как интерфейс к персональному компьютеру для предлагаемого контроллера флеш-памяти с шиной ONFI. В 2007 году была собрана рабочая группа для проработки NVMHCI во главе с Intel. Первая спецификация NVMHCI 1.0 была закончена в апреле 2008 года и размещена на сайте Intel. Техническая проработка NVMe началась с второй половины 2009 года.Спецификации NVMe были разработаны "NVM Express Workgroup", в которую входило более 90 компаний, председателем группы был Amber Huffman из Intel. Первая версия NVMe 1.0 была издана 1 марта 2011 года, версия 1.1 - 11 октября 2012 года. В версии 1.1 были добавлены многопутевый ввод-вывод и возможность проведения DMA-операций по множеству адресов с фрагментами произвольной длины (arbitrary-length scatter-gather I/O). Последующие версии стандарта улучшили управление пространствами имен. Из-за изначальной фокусировки на корпоративных применениях стандарт NVMe 1.1 получил название "Enterprise NVMHCI". Обновление базовой спецификации NVMe, версии 1.0e, вышло в январе 2013 года.

Особенности микросхем NAND флэш-памяти.

Статья добавлена: 08.02.2019 Категория: Статьи

Особенности микросхем NAND флэш-памяти. Микросхемы NAND флэш-памяти оптимизированы для секторного выполнения операций. Флеш-память пишется блоками по 4 Кбайта, а стирается по 512 Кбайт. При модификации нескольких байт внутри некоторого блока контроллер выполняет следующую последовательность действий: - считывает блок, содержащий модифицируемый блок во внутренний буфер/кеш; - модифицирует необходимые байты; - выполняет стирание блока в микросхеме флэш-памяти; - вычисляет новое местоположение блока в соответствии с требованиями алгоритма перемешивания; - записывает блок на новое место. Как только вы записали информацию, она не может быть перезаписана до тех пор, пока не будет очищена. Проблема заключается в том, что минимальный размер записываемой информации не может быть меньше 4 Кб, а стереть данные можно минимум блоками по 512 Кб. Для этого контроллер группирует и переносит данные для освобождения целого блока (вот тут и сказывается оптимизация операционной системы (ОС) для работы с HDD). При удалении файлов операционная система не производит физическую очистку секторов на диске, а только помечает файлы как удаленные, и знает, что занятое ими место можно заново использовать. Работе самого накопителя HDD это никак не мешает. Хотя такой метод удаления помогает повысить производительность при работе с HDD, но при использовании SSD он становится проблемой. В SSD, как и в традиционных жестких дисках, данные все еще хранятся на диске после того, как они были удалены операционной системой. Но дело в том, что твердотельный накопитель не знает, какие из хранящихся данных являются полезными, а какие уже не нужны и вынужден все занятые блоки обрабатывать по длинному алгоритму. Прочитать, модифицировать и снова записать на место, после очистки затронутых операцией ячеек памяти, которые с точки зрения ОС уже удалены. Следовательно, чем больше блоков на SSD содержит полезные данные, тем чаще приходится прибегать к процедуре чтение > модификация > очистка > запись, вместо прямой записи. Вот здесь пользователи SSD сталкиваются с тем, что быстродействие диска заметно снижается по мере их заполнения файлами.

Разъемы и кабели для USB 3.0.

Статья добавлена: 08.02.2019 Категория: Статьи

Разъемы и кабели для USB 3.0. Для USB 3.0 предусмотрены новые группы контактов. Изменение количества контактов в новой ревизии привело и к изменению формфактора разъемов (разъём USB 3.0 Standart-A показан на рис. 1; USB 3.0 Standart-B - на рис. 2; USB 3.0 Micro-B – на рис. 3). Кабели стандарта А теперь оснащаются более длинным разъемом, в котором дополнительные контакты расположены чуть дальше и отдельно от относящихся к USB 2.0, соответственно и порт стал глубже. В разъемах типа-В они располагаются выше остальных контактов на отдельной колодке. Конструкция предусматривает, что ко всем портам можно подключать как новые, так и старые кабели, также существует обратная совместимость между разъемами типа-А, однако кабели типа-В обратно несовместимы.

GUID типов разделов.

Статья добавлена: 13.12.2017 Категория: Статьи

GUID типов разделов. Каждая файловая система получает свой GUID, однозначно ее идентифицирующий. Разработчики ОС для своих файловых систем формируют собственные коды GUID. Примечание 1: GUID для раздела данных Linux является дубликатом GUID для раздела основных данных Microsoft Windows. Примечание 2: Порядок записи байтов в написаниях GUID является little-endian. К примеру, GUID системного раздела EFI записан как: C12A7328-F81F-11D2-BA4B-00A0C93EC93B, что соответствует последовательности 16 байтов: 28 73 2A C1- 1F F8 - D2 11 - BA4B-00A0C93EC93B. Обратите внимание, что байты пишутся задом наперед только в первых трех блоках: (C12A7328-F81F-11D2). Идентификаторы (GUIDs) различных типов разделов:

Сore (ядро), Uncore (субъядро), System agent (системный агент).

Статья добавлена: 08.02.2019 Категория: Статьи

Сore (ядро), Uncore (субъядро), System agent (системный агент). Все компоненты, входящие в микроархитектуру процессоров Nehalem, были разделены на два основных блока (рис. 1). В Intel их называют: core (ядро) и uncore (субъядро). Ядро (core) отвечает за выполнение традиционных функций, обычно связываемых с работой процессора. Это - вычислительные блоки, модуль предсказания ветвлений, регистры памяти и два типа кэшей L1 и L2. Субъядро (uncore) охватывает компоненты, отвечающие за средства коммуникации с внешним миром, сюда относятся : - контроллер памяти (memory controller), - интерконнект QuickPath (QuickPath links), - кэш 3-го уровня (L3 cache), - средства управления энергопитанием (power management), - встроенный графический контроллер. Предложенное архитектурное деление позволило перейти на новый принцип модельного деления серии выпускаемых процессоров. Отличительным признаком серии будет использованное ядро (core). А вот различная комплектация (рис. 1) уровня субъядро ("uncore") позволит выделить специализированные типы процессоров для отдельных применений:

Что дает технология Hyper-Threading?

Статья добавлена: 08.12.2017 Категория: Статьи

Что дает технология Hyper-Threading? Корпорация Intel реализовала технологию Hyper-Threading (НТ) в микроархитектуре Intel NetBurst (еще для процессоров Intel Pentium 4 и Intel Xeon) как инновационный способ обеспечения более высокой степени параллелизма на уровне потоков в процессорах для массовых систем. Но эта технология ограничена одним ядром, более эффективно использующим имеющиеся ресурсы для обеспечения лучшей поддержки многопоточности транзакций. Технология Hyper-Threading позволяет одному физическому процессору вести себя по отношению к операционной системе как два виртуальных процессора, поэтому Hyper-Threading обеспечивает более эффективную многозадачность и меньшее время отклика системы и более эффективное использование HOST-шины. Пользователи за счет улучшенной производительности могут выполнять несколько приложений одновременно, например, запустить игру и в фоновом режиме выполнять проверку на вирусы или кодирование видео.

Принципы построения принтера цветной лазерной однопроходной печати с транспортной лентой.

Статья добавлена: 12.03.2018 Категория: Статьи

Принципы построения принтера цветной лазерной однопроходной печати с транспортной лентой. Вариант построения мощного цветного лазерного принтера с однопроходным переносом тонера на бумагу, перемещаемую транспортной лентой показан на рис. 1. Заряд бумажного листа для притягивания тонера показан на рис. 2. На рис. 3 показано устройство картриджа цветного принтера.

Технология Thunderbolt — плюсы и минусы.

Статья добавлена: 07.12.2017 Категория: Статьи

Технология Thunderbolt — плюсы и минусы. Технология Thunderbolt успешнее всего отвечает всем требованиям специалистов, профессионально работающих с HD-видео. Обработка HD-видео является одной из самых требовательных вещей при работе с компьютером. С Thunderbolt Intel предлагает инновационную технологию, чтобы помочь профессионалам и потребителям работать быстрее и легче, с их растущей коллекции медиа-контента, от музыки до HD-видео. Например, видео-операторы могут использовать аудио и видео устройства с высокой пропускной способностью для захвата или микширования и получать результаты обработки в режиме реального времени с низкой задержкой и высокой точной синхронизацией. Благодаря поддержке скорости до 10 Гбит/с "тяжелые" мультимедийные файлы передаются быстрее, соответственно, меньше времени тратится на предварительный просмотр и редактирование видео. Данные также сохраняются и восстанавливаются быстрее, поэтому меньше времени тратится на доступ к архивному контенту. Для пользователей мобильных PC, например, ультратонких ноутбуков, удобство обеспечивается благодаря наличию одного разъема, что расширяет возможности использования HD дисплеев и высокоскоростных мультимедийных устройств дома и в офисе. Thunderbolt дополняет другие технологии I/O, поддерживаемые Intel.Благодаря ультрабыстрой скорости передачи данных, поддержки дисплеев с высоким разрешением и совместимости с существующей технологией I/O, Thunderbolt является прорывом для всей отрасли, разработчики смогут сделать революционные вещи,используя эту технологию. Кроме того, что Thunderbolt позволяет пользователям подключать через слот Mini DisplayPort специальный адаптер, для HDMI, DVI, VGA и других высокоскоростных соединений, Thunderbolt обеспечивает поддержку оптических соединений для подключения к высокоскоростным сетям. Для сравнения - технология USB 2.0 обеспечивает максимальную скорость передачи данных в 480 Мбит/с, USB 3.0 обеспечивает скорости до 5 Гбит/с, и все это - при идеальных условиях. Но Thunderbolt может поддерживать практически любую технологию и обеспечить соединение в 10 Гбит/с. При этом через Thunderbolt можно подключить универсальный адаптер, который понесет на своем борту несколько технологий. Для того чтобы работала вся эта система, нужен контроллер Thunderbolt (Intel утверждает, что он индифферентен к установленному в системе «железу», в том плане, что может работать как с процессорами и чипсетами Intel, так и с процессорами/чипсетами AMD, а также с центральными процессорами прочих производителей). Работает микросхема как своего рода «миниатюрный роутер», быстро переключающийся в процессе функционирования между двумя двунаправленными каналами данных. Кроме того, интерфейс Thunderbolt имеет обратную совместимость с другими стандартами, это зависит лишь от используемого кабеля. При использовании соответствующего адаптера к порту Thunderbolt можно будет подключать любые аксессуары, предназначенные для работы с USB 2.0, FireWire или eSATA. В ближайшем будущем порты Thunderbolt на компьютере и на периферийном устройстве будут соединять оптическим кабелем (такие кабели появятся тогда, когда их стоимость станет более-менее приемлемой). Для оптических кабелей переделка портов Thunderbolt не потребуется - оптико-электрические преобразователи будут встраиваться прямо в кабель.

Способы борьбы с проблемами электропитания компьютерных систем.

Статья добавлена: 07.12.2017 Категория: Статьи

Способы борьбы с проблемами электропитания компьютерных систем. Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к повреждениям оборудования, и проблемы, вызывающие повреждение данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышенным, любое напряжение ниже 205 В - пониженным. Повышенное напряжение может привести к выходу из строя источников питания компьютеров и другого оборудования. Электромоторы перегреваются при пониженном напряжении. Для микрокомпьютеров обычно используют источники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению. Аномалия в электропитании, которая особенно опасна для компьютеров и электроники вообще - это импульс, известный также как кратковременное повышение, выброс или колебание напряжения. Импульс - это очень короткое повышение напряжения, причиной которого может служить удар молнии в силовую линию, включение определенного типа силовых устройств либо управление двигателем переменной скорости. Типичный импульс, величина которого может составлять от нескольких сотен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд. Отключение энергии - проблема, требующая наиболее пристального внимания. Не заметить полную потерю питания действительно довольно сложно. Кратковременное отключение энергии - длящееся лишь от полупериода до пары периодов волны - часто называют выпадением питания. Радиочастотная интерференция ведет к возникновению электрошума, который накладывается на предполагаемо чистую, синусоидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в питающую шину компьютера, компьютер может ошибочно интерпретировать его как данные. Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления.

Условия необходимые для надежной работы компьютера.

Статья добавлена: 07.12.2017 Категория: Статьи

Условия необходимые для надежной работы компьютера. Для нормальной работы компьютера, напряжение питающей сети должно быть достаточно стабильным, а уровень помех в ней не должен превышать предельно допустимой величины. При подключении компьютера к сети переменного тока, от которой питаются устройства большой мощности, перепады напряжения, возникающие при включении и выключении этого оборудования, немедленно сказываются на его работе. При работе мощных агрегатов в сети могут возникать переходные процессы (всплески напряжения) амплитудой до 1000 В и выше, которые могут просто вывести из строя блок питания компьютера. Если для питания компьютера используется отдельная линия, то и это не исключает появления в ней выбросов напряжения, поскольку это зависит от качества всей сети энергоснабжения здания или района. Выбирая место и способ подключения системы к сети, необходимо соблюдать следующие правила: подключение компьютеров осуществлять к отдельным линиям питания со своими предохранителями (желательно автоматическими); перед подключением необходимо проверить сопротивление шины заземления (оно должно быть низким); выходное напряжение линии должно находиться в допустимых пределах, и не должно быть помех и всплесков напряжения; подключение компьютера к сети должно производится с помощью трехштырьковых вилок, нельзя пользоваться переходниками для розеток с двумя гнездами, поскольку система при этом останется без заземления; не пользуйтесь без крайней необходимости удлинителями (выбирайте те из них, которые рассчитаны на подключение мощных потребителей энергии) ведь уровень помех в сети возрастает при увеличении внутреннего сопротивления линии, т.е. чем длиннее соединительные провода и чем меньше их сечение, тем он выше; для подключения устройств, не имеющих отношения к компьютерам, лучше использовать другую розетку. Холодильники, кондиционеры, кофеварки, копировальные аппараты, лазерные принтеры, обогреватели, пылесосы и мощные электроинструменты тоже отрицательно влияют на качество питающего компьютер напряжения. Любое из этих устройств, включенное в одну розетку с компьютером, может стать причиной его сбоя. Кроме того копировальные аппараты и лазерные принтеры потребляют слишком большую мощность, и их только из-за этого уже не стоит включать в одну розетку с компьютером. Нельзя, чтобы вся электросеть офиса представляла собой последовательную цепочку проводов и розеток, в этом случае, качество напряжения для компьютеров, подключенных к последним розеткам в этой цепи оставляет желать лучшего.

Для чего используется видеопамять?

Статья добавлена: 07.12.2017 Категория: Статьи

Для чего используется видеопамять? Скорость, с которой информация поступает на экран, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов: - разрешение вашего монитора; - количество цветов, из которых можно выбирать при создании изображения; - частота, с которой происходит обновление экрана. Разрешение определяется количеством пикселов на линии и количеством самих линий. Поэтому, на дисплее, например, с разрешением 1024х768, изображение формируется каждый раз при обновлении экрана из 786432 пикселов информации. Обычно, частота обновления экрана имеет значение не менее 75Hz или циклов в секунду. Следствием мерцание экрана является зрительное напряжение и усталость глаз при длительном наблюдении за изображением. Для уменьшения усталости глаз и улучшения эргономичности изображения, значение частоты обновления экрана должно быть достаточно высоким, не менее 75 Hz. Число допускающих воспроизведение цветов или глубина цвета это десятичный эквивалент двоичного значения количества битов на пиксел. Так, 8 бит на пиксел эквивалентно 28 или 256 цветам, 16 битный цвет, часто называемый просто high-color, отображает более 65000 цветов, а 24 битный цвет, также известный, как истинный или true color, может представить 16.7 миллионов цветов. 32 битный цвет, с целью избежать путаницы, обычно означает отображение истинного цвета с дополнительными 8 битами, которые используются для обеспечения 256 степеней прозрачности. Так, в 32 битном представлении каждый из 16.7 миллионов истинных цветов имеет дополнительные 256 степеней доступной прозрачности. Такие возможности представления цвета имеются только в системах высшего класса и графических рабочих станциях. Так как компьютер все больше становится средсвом визуализации, с более лучшей графикой, а графический интерфейс пользователя становится стандартом, пользователи хотят видеть больше информации на своих мониторах. Мониторы с диагональю 17 дюймов становятся стандартным оборудованием и разрешение 1024х768 пикселов адекватно заполняет экран с таким размером. Некоторые пользователи используют разрешение 1280х1024 пикселов на 17 дюймовых мониторах и более. В обычной графической подсистеме для обеспечения разрешения 1024x768 требуется 1 Мегабайт памяти. Несмотря на то, что только три четверти этого объема памяти необходимо в действительности, графическая подсистема обычно хранит информацию о курсоре и ярлыках в буферной памяти дисплея (off-screen memory) для быстрого доступа. Пропускная способность памяти определяется соотношением того, как много мегабайт данных передаются в память и из нее за секунду времени. Типичное разрешение 1024х768, при 8 битной глубине представления цвета и частоте обновления экрана 75 Hz, требует пропускной способности памяти 1118 мегабайт в секунду. Добавление функций обработки 3D графики требует увеличения размера доступной памяти на борту видеоадаптера. Дополнительная память, сверх необходимой для создания изображения на экране, используется для z-буфера и хранения текстур.

Стр. 95 из 213      1<< 92 93 94 95 96 97 98>> 213

Лицензия