Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Ремонт ПК

Стр. 51 из 51      1<< 48 49 50 51

Индикатор состояния мощности (сигнал PSI).

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Индикатор состояния мощности (сигнал PSI) для повышения экономичности работы VRM-модуля при малой загрузке. Разработчики всегда ищут компромисс между числом фаз (транзисторных каскадов) и стоимостью реализации. В основу новой схемотехники модулей питания процессора положен принцип динамического выбора числа активных фаз в зависимости от потребностей процессора. Задача измерения тока, потребляемого процессором, возложена на ШИМ-контроллер (или на внешнюю схему – по желанию разработчиков). Регулировка подачи питания на процессор производится по сигналу PSI (Power Status Indicator) процессора, который генерируется, когда процессор находится в режиме Deeper Sleep. Сигнал о величине тока поступает на процессор, а тот, в свою очередь, определяет, в каком состоянии находится – в стандартном или с низкой нагрузкой. В случае низкой нагрузки сигнал PSI # поступает обратно на ШИМ-контроллер, который может отключить часть фаз за ненадобностью и тем самым снизить энергопотребление всей схемы питания. Сигнал PSI позволяет повысить эффективность регулятора напряжения питания процессора и улучшить тем самым энергоэкономичность компьютеров.

Состояния ПК с точки зрения ACPI.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Состояния ПК с точки зрения ACPI. C точки зрения ACPI, вообще имеется четыре состояния ПК: - G0 - обычное, рабочее состояние; - G1 - suspend, спящий режим; - G2-soft-off, режим когда питание отключено, но блок питания находится под напряжением, и ПК готов включиться в любой момент; - G3 - mechanical off - питание отключено полностью. Механизм синхронизации процесса перехода из состояния G3 (питание отключено полностью) в cостояние S0 (активный режим – все включено) показан на рис. 1. Механизм синхронизации процесса перехода из состояния S0 в S1 и затем в S0 показан на рис. 2. Механизм синхронизации процесса перехода из состояния S0 в S5 и затем в S0 показан на рис. 3. В расширение состояния G1 вместо простого засыпания ввели четыре специальных режима:

Правила сброса для PCI Express.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Правила сброса для PCI Express. В версии PCI Express 3.0 максимальная полоса пропускания канала увеличена до 8 ГТ/с с незначительными изменениями протокола обмена, форм-фактора и методов обеспечения целостности данных. Данная статья определяет особенности поведения канала PCI Express при «сбросе». Сброс может быть сгенерирован платформой или на компоненте, но любые отноше¬ния между сбросом канала PCI Express и сбросом компонента или платформы являются специфическими для компонента или платформы соответственно. Должен присутствовать аппаратный механизм для установления или возвращения всех состояний порта в начальные условия, определенные стандартом - этот механизм называется Power Good Reset. Сброс Power Good Reset, происходящий после подачи питания к компоненту, называется холодным сбросом или, иначе, Cold Reset. В некоторых случаях возможен запуск механизма "Power Good Reset" аппаратным обеспечением без снятия и подачи питания компонента. Такой сброс называется теплым сбросом или, иначе, Warm Reset. Также существует внеполосный механизм для распространения сброса за пределами канала, он называется горячим сбросом или, иначе, Hot Reset. Переход в состояние "DL_Inactive" в некоторых случаях идентичен сбросу Hot Reset. При выходе из любого типа сброса (Cold, Warm или Hot), все регистры порта и конечные автоматы должны быть установлены в их начальные состояния, определенные стандартом PCI Express. При выходе из состояния Power Good Reset физический уровень будет пытаться запустить ("поднять") канал. Как только оба компонента вошли в состояние начальной проверки канала, то далее их состояние будет изменяться через инициализацию канала для физического уровня и затем через инициализацию для виртуального канала VC0, подготавливая таким образом уровень транзакций и канальный уровень к использованию канала. После инициализации VC0 пакеты TLP и DLLP могут быть переданы через канал. После сброса некоторые устройства потребуют дополнительного времени, перед тем как они будут способны ответить на принятые запросы. Для конфигурационных запросов особенно необходимо, чтобы компоненты и устройства вели себя детерминистическим путем, который следует правилам адресации. Правила требований адресации для компонентов и устройств разделяются на два подмножества: - требования к компонентам; - требования к системе.

Микропрограмма жесткого диска (Firmware).

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Микропрограмма жесткого диска (Firmware). Небольшая часть микропрограммы (firmware) контроллера жесткого диска хранится в микросхеме, а оставшаяся часть хранится на магнитных дисках в специально отведенной для этого служебной области, недоступной для пользователя. После подачи рабочего напряжения или активизации сигнала «Сброс» на информационной шине микропроцессор жесткого диска перезапускает программу, записанную в микросхеме, выполняет самодиагностику, тестирует оперативную память, программирует микросхемы, находящиеся на внутренней шине жесткого диска, и при отсутствии аварийной ситуации запускает двигатель. Затем, измеряя период следования импульсов фазных обмоток, ожидает, пока двигатель не наберет номинальную скорость вращения. После этого он выдает команду на перемещение магнитных головок на дорожку, содержащую микропрограмму, и начинает считывать серворазметку, окончательно стабилизируя скорость вращения. После считывания микропрограммы и ее последующего выполнения жесткий диск готов к приему сигналов с внешнего интерфейса компьютера.

SSD-диски.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

SSD-диски. В SSD дополнительно используются микросхемы DDR DRAM кеш-памяти. Это связано со спецификой работы и возросшей в несколько раз скоростью обмена данными между контроллером и интерфейсом. SSD-контроллер твердотельного диска (см. рис. 1) обеспечивает выполнение операций чтения/записи, и управление структурой размещения данных. Основываясь на матрице размещения блоков, в какие ячейки уже проводилась запись, а в какие еще нет, контроллер должен оптимизировать скорость записи и обеспечить максимально длительный срок службы SSD-диска. Вследствие особенностей построения NAND-памяти, работать с ее каждой ячейкой отдельно нельзя. Ячейки объединены в страницы объемом по 4 Кбайта, и записать информацию можно, только полностью заняв страницу. Стирать данные можно по блокам, которые равны 512 Кбайт. Все эти ограничения накладывают определенные обязанности на правильный интеллектуальный алгоритм работы контроллера. Поэтому, правильно настроенные и оптимизированные алгоритмы контролера могут существенно повысить производительность и долговечность работы SSD-диска. В контроллер входят следующие основные элементы: - Processor – как правило, 16-ти или 32-х разрядный микроконтроллер. Выполняет инструкции микропрограммы, отвечает за перемешивание и выравнивание данных на Flash, диагностику SMART, кеширование и безопасность. - Error Correction (ECC) – блок контроля и коррекции ошибок ECC; - Flash Controller – включает адресацию, шину данных и контроль управления микросхемами Flash памяти; - DRAM Controller - адресация, шина данных и управление DDR/DDR2/SDRAM кэш памятью; - I/O interface – отвечает за интерфейс передачи данных на внешние интерфейсы SATA, USB или SAS; - Controller Memory – состоит из ROM памяти и буфера. Память используется процессором для выполнения микропрограммы и как буфер для временного хранения данных. При отсутствии внешней микросхемы RAM памяти выступает в роли единственного буфера данных SSD.

Системная шина QPI для серверов на многоядерных процессорах Core iX.

Статья добавлена: 25.05.2020 Категория: Ремонт ПК

Системная шина QPI для серверов на многоядерных процессорах Core iX. Все компоненты, входящие в процессоры семейства Core iX, обычно разделены на два основных блока. В Intel их называют: «core» (ядро) и «uncore» (субъядро). Ядро (core) отвечает за выполнение традиционных функций, обычно связываемых с работой процессора. Это - вычислительные блоки, модуль предсказания ветвлений, регистры памяти и два типа кэшей L1 и L2. Субъядро ("uncore") охватывает компоненты, отвечающие за средства коммуникации с внешним миром. Сюда относятся контроллер памяти (memory controller), блок интерконнект QuickPath (QuickPath links), кэш 3-го уровня (L3 cache), средства управления энергопитанием (power management). Еще одним из элементов, относящимся к уровню uncore, стал и встроенный графический контроллер (графический процессор). Предложенное архитектурное деление осуществляет переход на новый принцип модельного деления серии выпускаемых процессоров. Отличительным признак серии будет использованное ядро (core). А вот различная комплектация уровня субъядро ("uncore") позволит выделить специализированные типы процессоров для отдельных применений: домашние, настольные для бизнес-решений, серверные. Понятно, что серверная версия будет отличаться расширенным размером кэша L3 и добавлением каналов QPI (QuickPath Interconnect). Итак, кристалл процессора Core i7 (Nehalem) с другими компонентами системы пока связывают два архитектурных блока (рис. 1): - QuickPath Interconnect (QPI) – связь с чипсетом (и другим процессором в многопроцессорных вариантах); - Integrated Memory Controller (IMC) – связь с модулями памяти. Основное достоинство нового интерфейса QPI – это сочетание высокой пропускной способности - до 15 Гбит/с и низкого энергопотребления (не более 5,0 мВт на каждый гигабит в секунду при пропускной способности 15 Гбит/с). При скорости передачи данных 5 Гбит/с новый интерфейс Intel обладает уровнем энергопотребления не более 2,7 мВт на каждый гигабит в секунду. Эти результаты сегодня являются рекордными с точки зрения эффективности работы современных приёмников данных Теоретически, Intel может повысить пропускную способность существующих интерфейсов в три раза, довольствуясь только 25% уровня энергопотребления нынешних интерфейсов.

ПРОГРАММИРОВАНИЕ ВВОДА-ВЫВОДА HDD НА ФИЗИЧЕСКОМ УРОВНЕ.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

ПРОГРАММИРОВАНИЕ ВВОДА-ВЫВОДА HDD НА ФИЗИЧЕСКОМ УРОВНЕ. Описание программы чтения сектора на физическом уровне для HDD (программа работает на уровне регистров и команд контроллера HDD).

Технологии стандарта DDR4

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Технологии стандарта DDR4. Компания Rambus представила технологии стандарта DDR4, которые помогают в два раза увеличить скорость передачи данных по каждому контакту модуля памяти по сравнению с DDR 3 - до 4266 Мбит/с. Кроме того, будет значительно уменьшено напряжение питания для активного режима и режима ожидания, а также будет обеспечено обслуживание нескольких двухканальных модулей DIMM (Dual In-line Memory Module) на каждом канале памяти. Основные трудности на пути стандарта DDR4 в версии Rambus заключаются в лицензировании. У индустрии оперативной памяти уже есть негативный опыт по использованию памяти RDRAM, которая имела закрытую архитектуру. В результате даже Intel, основной партнер Rambus по этому проекту, отказался от технологии RDRAM в пользу более открытых, хотя и менее эффективных на тот момент технологий. Оперативная память следующего поколения, DDR4 SDRAM, как ожидается, сможет привнести в будущие серверные, настольные и мобильные платформы значительное увеличение производительности. Однако достижение новых рубежей быстродействия потребует радикальных изменений в топологии подсистемы памяти. Эффективная частота модулей DDR4 SDRAM составит от 2133 до 4266 МГц, что несколько выше предыдущих прогнозов (частоты до 2133 МГц смогут быть покрыты модулями DDR3 SDRAM). Перспективные модули памяти окажутся не только быстрее, но и экономичнее своих предшественников. Они будут использовать пониженное до 1,1-1,2В напряжение питания, а для энергоэффективной памяти штатным станет напряжение 1,05 В. Ожидается, что производителям чипов DRAM при изготовлении микросхем DDR4 SDRAM придется прибегать к использованию самых передовых производственных технологий. Фактический же массовый переход на использование DDR4 SDRAM прогнозировался на 2015 год. При этом необходимо иметь в виду, что экстремально высокие скорости работы памяти нового поколения потребуют внесения изменений в привычную структуру всей подсистемы памяти. Дело в том, что контроллеры DDR4 SDRAM смогут справиться лишь с единственным модулем в каждом канале. Это значит, что на смену параллельному соединению модулей памяти в каждом канале придет четко выраженная топология точка-точка (каждая установленная планка DDR4 будет задействовать разные каналы). Чтобы гарантировать высокие частоты спецификация DDR4 поддерживает только один модуль на каждый контроллер памяти. Это означает, что производителям потребуется увеличить плотность чипов памяти и создать более продвинутые модули. В то же время тайминги будут расти, хотя время доступа продолжит снижаться.

Шина Hyper-Transport 3.1 (AMD).

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Шина Hyper-Transport 3.1 (AMD). Предыдущая спецификация HyperTransport 3.0 имела пиковую пропускную способностью до 41,6 Гбайт/c. В стандарте была введена поддержка частот 1,8 ГГц, 2.0 ГГц, 2,4 ГГц, 2,6 ГГц, функции "горячего подключения", динамического изменения частоты шины и энергопотребления, динамического конфигурирования и других инновационных решений. Максимальное расстояние передачи данных без потери эффективности по шине HT 3.0 составляла 1 метр. Улучшена поддержка многопроцессорных конфигураций, добавлена возможность автоматического конфигурирования для достижения наибольшей производительности. Основные технические характеристики технологии Hyper-Transport HT 3.0 приведены

Причины отказов мобильных компьютеров(статистика).

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Причины отказов мобильных компьютеров(статистика). В современных мобильных компьютерах применены технологии повышающие защиту от «человеческого фактора», так как по статистике он имеет очень большое влияние на долговечность и надежность работы ноутбуков. Около 30% пользователей, обращаются в сервисный центр из-за неисправности клавиатуры по причине проливания на нее жидкости (чай, кофе, пиво, и так далее), примерно 15% дефектов клавиатуры из-за излишних усилий, прилагаемых пользователем. Реже обращаются по причинам выхода из строя блоков питания (10%), из-за разбитой матрицы ноутбука(10%). Всего 5% составляют выходы из строя контроллеров USB-портов (как правило, это происходит с бюджетными моделями и является следствием отсутствия ключа защиты по питанию порта в стандартном чипсете материнской платы). Примерно 5% составляют сбои модулей памяти DDR и «битые» пиксели и кластеры; еще чуть реже из-за перегрева видеокарты происходит последующее замыкание на материнской плате (данная проблема возникает в ноутбуках, оборудованных дискретными видеокартами, на которых чипы видеопамяти расположены друг над другом и над видеопроцессором, разогретый припой может стечь на ножки GPU или на материнскую плату и привести к замыканию). Около 3% проблем составляет залитая жидкостью материнская плата (эта неисправность появляется, если пролитая на ноутбук жидкость не остановилась на уровне клавиатуры и проникла глубже в корпус). Иногда засоренная система охлаждения вызывает перегрев ноутбука (примерно 2% ). Причиной этого может быть множество различных обстоятельств: частая работа с ноутбуком на кровати, вязаная одежда и так далее. В результате разового перегрева, из-под радиатора вытекает термопаста и впоследствии этого, система охлаждения работает гораздо менее эффективно, и не обеспечивает стабильной работы системы. Перегрев ноутбука может произойти и из-за его работы в сумке (производители сумок обычно пишут в инструкции по эксплуатации, что ноутбук для работы необходимо извлечь из сумки). При работе в транспорте, во время резких встрясок, головки высокоскоростных винчестеров могут подниматься над пластиной и, опускаясь, оставлять царапины (2%). Еще около 1,5% составляют механические повреждения USB-портов в результате неаккуратного извлечения коннекторов из разъемов. Достаточно редко (0,7%) происходит «залипание» предохранителя аккумуляторной батареи при минимальном заряде. Это является следствием ложного срабатывания защиты от взрыва лития. Предохранитель блокирует процесс заряда батареи. Для решения проблемы требуется разобрать батарею и поменять элементы в цепи управления. При изменении угла наклона экрана или при его включении, сразу после открытия крышки случается периодическое пропадание изображения на экране ноутбука (всего 0,5%). Проблема чаще всего связана с одним из шлейфов, которыми подключается ЖК-матрица. Шлейф или провод перетёрся и замыкается на корпус, либо просто имеет плохой контакт, либо даже выпадает из гнезда подключения. Еще реже (0,4%) встречается отсутствие изображения на экране после включения ноутбука.

Что дает перемещение контроллера памяти непосредственно в процессор?

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Что дает перемещение контроллера памяти непосредственно в процессор? Перемещение контроллера памяти непосредственно в современные процессоры достаточно сильно сказывается на общей производительности компьютерных систем. Главным фактором тут является исчезновение «посредника» между процессором и памятью в лице «северного моста». Производительность процессора больше не зависит от используемого чипсета и, как правило, вообще от системной платы (т.е. последняя превращается просто в объединительную панель). Конкретные контроллеры чипсета продолжают оказывать влияние на производительность дисковой системы или периферийных интерфейсов, но процессоры начиная с архитектуры Sandy Bridge уже были от этого влияния освобождены. С другой стороны, производительность центральных процессоров в зависимости от выбранной конфигурации системы памяти может меняться совершенно нелинейным образом. Просто потому, что контроллер памяти теперь неотъемлемая составляющая самого процессора, так что на него могут влиять другие компоненты. И он сам на них влиять может — например, кого ранее заботило энергопотребление или тепловыделение чипсета. Теперь же «лишние» ватты и градусы добавляются к процессору, что вполне может сказаться и на пороге тротлинга, уменьшая, тем самым, и производительность вычислительных блоков. Плюс к тому возросла роль задержек — естественно, время доступа всегда сильно сказывалось на итоговой производительности, однако ранее эффект сильно нивелировала сложная схема доступа к памяти (пока запрос к ней доходил от процессора, он успевал на каждом этапе «обрасти» дополнительными задержками). Интегрированный контроллер памяти (ИКП) весьма эффективно с ними борется, существенно снижая общую латентность, однако тем большее значение начинают иметь собственные задержки модулей памяти, или самого контроллера — «посредники» теперь отсутствуют, общее время снижается в разы, так что уже каждая наносекунда на счету.

6-фазный PWM-контроллер Intersil ISL6336A.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

6-фазный PWM-контроллер Intersil ISL6336A. Контроллер Intersil ISL6336A может динамически отслеживать текущую загрузку процессора (ток, потребляемый процессором) и в зависимости от этого активировать необходимое число фаз питания (PWM-каналов). Например, когда процессор загружен несильно, а значит, потребляемый им ток невелик, вполне можно обойтись и одной фазой питания, а потребность в шести фазах возникает только при сильной загрузке процессора, когда потребляемый им ток достигает максимального значения. Динамическое переключение числа фаз питания в регуляторе напряжения производится с целью оптимизации его КПД или энергоэффективности. Дело в том, что любой регулятор напряжения сам потребляет часть преобразуемой им электроэнергии, которая выделяется в виде тепла. Функциональная блок-схема 6-фазного PWM-контроллера Intersil ISL6336A приведена на рис. 1, описание контактов ISL6336A – на рис. 2, а типовая схема использования 6-фазного PWM-контроллера Intersil ISL6336A показана на рис. 3.

Стр. 51 из 51      1<< 48 49 50 51

Лицензия