Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 165 из 213      1<< 162 163 164 165 166 167 168>> 213

Технологии Plug&Play видеосистем.

Статья добавлена: 28.08.2017 Категория: Статьи

Технологии Plug&Play видеосистем. Для идентификации мониторов ассоциацией VESA был предложен стандарт DDC (Display Data Chanel), который позволяет определять мониторы различных производителей, и, кроме того, позволяет получать и другую информацию о параметрах и характеристиках любого монитора. Разработка стандарта DDC была обусловлена развитием технологии Plug&Play, которая подразумевает, что внешнее устройство должно “сообщить” о себе основные сведения для того, чтобы операционная система обеспечила правильное конфигурирование и настройку оборудования путем поиска и установки наиболее подходящего драйвера устройства. Для оптимальной настройки изображения необходимо учитывать размер экрана, тип монитора, его цветовые характеристики, поддерживаемые режимы (разрешающая способность), параметры входных сигналов, а, кроме того, желательно знать поддерживается ли монитором система энергосбережения DPMS. В стандарте DDC вся информация о мониторе передается из монитора в ПК по последовательному интерфейсу, состоящему из двух линий: линии синхронизации и линии данных. При разработке DDC в качестве основы был применен интерфейс I2C, линия синхронизации интерфейса в DDC получила название DDC_CLK. На этой линии формируется последовательность импульсов, тактирующих передачу данных. Для передачи каждого байта на линии DDC_CLK генерируется девять импульсов: 8 – для передачи битов байта и 1 – бит подтверждения – ACK (квитирующий бит). Тактовые сигналы формируются устройством, запрашивающим информацию (ведущим устройством), т.е. видеокартой ПК. Частота импульсов DDC_CLK может быть любой – ограничен только ее верхний предел величиной 100 кГц. Однако последние версии стандарт DDC уже позволяют передавать данные с частотой до 400 кГц. Линия данных интерфейса DDC получила название DDC_DATA. На этой линии сигнал устанавливается либо в “высокий”, либо в “низкий” уровень, в зависимости от передаваемых данных, с частотой следования тактовых импульсов DDC_CLK. Считывание информации, выставленной на DDC_DATA, происходит при каждом тактовом импульсе на DDC_CLK. Уровни напряжений сигналов DDC_DATA и DDC_CLK – до 5 В, т.е. “высокому” уровню соответствует напряжение 5В, а “низкому” уровню сигналов соответствует напряжение около 0В. Началом цикла передачи байта данных на интерфейсе DDC является условие Start – сигнал DDC_DATA переводится из высокого уровня в низкий при высоком уровне сигнала DDC_CLK. Завершается цикл передачи байта переводом сигнала DDC_DATA из низкого уровня в высокий при высоком уровне сигнала DDC_CLK – это условие Stop. При передаче данных состояние сигнала DDC_DATA может изменяться только при низком уровне сигнала DDC_CLK. Биты данных стробируются фронтом импульсов DDC_CLK. После передачи 8 битов передающее устройство (монитор) на один такт освобождает линию данных для получения подтверждения о приеме байта принимающим устройством (компьютером). Принимающее устройство во время этого девятого такта формирует бит ACK, устанавливая сигнал на DDC_DATA в низкий уровень. При запросе от ПК, монитор передает 128 байтов данных, которые содержат следующую информацию: - фирма-производитель монитора; - модель монитора; - дата изготовления; - серийный номер; - система команд управления; - размеры экрана; - тип монитора; - параметры входных сигналов; - поддерживаемые режимы энергосбережения стандарта DPMS; - дисплейная гамма; - цветовые характеристики люминофоров; -поддерживаемые стандартные режимы работы; - параметры нестандартных поддерживаемых режимов. Для размещения и хранения всей этой информации в мониторе предусмотрено применение микросхемы памяти – ПЗУ, точнее сказать, микросхемы электрически перепрограммируемого ПЗУ (EEPROM, E2PROM, FLASH). В качестве таких микросхем обычно используются микросхемы семейства 2421 и 240х (2401, 2402 и т.д.), реже применяются микросхемы семейства 93Cx6 (93С06, 93С46, 93С66 и т.д.). Несмотря на значительный объем полученной информации о характеристиках и параметрах монитора, операционные системы семейства Windows пользователю сообщают лишь наименование фирмы производителя монитора и его модель. Более подробную информацию о мониторе можно получить только с помощью специализированных утилит или программ, которые часто поставляются вместе с мониторами на дискетах или CD-ROM. Ассоциацией VESA было предложено несколько вариантов стандарта DDC: DDC1, DDC2B, DDC2A/B. Эти стандарты в дальнейшем дорабатывались и совершенствовались, и на сегодняшнее время существуют несколько версий (ревизий) каждого из стандартов.

Использование и особенности стандарта USB 3.0

Статья добавлена: 28.08.2017 Категория: Статьи

Использование и особенности стандарта USB 3.0 Предыдущие версии USB (стандарта USB 1.1 и USB 2.0) обеспечивали скорость обмена от 12 Мбит/с до 480 Мбит/с соответственно. Интерфейс USB 2.0, представленный в 2000 г., был огромным шагом вперед по сравнению с предыдущей ревизией стандарта. Однако по прошествии 10 лет периферийные устройства, подключаемые к этой шине, настолько развились, что на сегодняшний день ее возможностей абсолютно недостаточно. Пришло время обновления - USB 3.0. Новая версия интерфейса USB 3.0 поддерживает полнодуплексный режим передачи данных, а пропускная способность возросла до 4,8 Гбит/с, то есть примерно в десять раз. Были улучшены возможности энергосбережения, но обратная совместимость с устройствами USB 2.0 и USB 1.1 сохранена. SuperSpeed USB – это радикальное обновление стандарта. Стандарт SuperSpeed Universal Serial Bus (USB 3.0) предполагает десятикратное (до 4,8 Гбит/сек.) увеличение скорости передачи данных в сравнении с USB 2.0. Таким образом пиковая производительность USB 3.0 - 5 Гбит/с, а это означает, что файл размером 25 Гб можно передать приблизительно за 70 секунд (у соединения USB 2.0 на то же задание уйдёт 14 минут). Поэтому SuperSpeed USB считают идеальным решением для массы задач, таких как копирование больших изображений, видео или резервирование данных на внешний носитель. Стандарт USB 3.0 предлагает нам более оптимизированное энергетическое управление и полную совместимость с USB 2.0. Новые возможности по управлению питанием SS (superspeed) устройств и уровнем общения с ними, делают возможной ситуацию, когда хост и девайс могут договориться о том, как бы им вместе с компьютером впасть "в спячку", и как вообще «внешний девайс» относится к понижению мощности в данный момент? В новом протоколе SS существует даже некое понятие роутинговой информации в пакетах (чтобы не бегать ко всем устройствам через хаб). В USB 3.0 внесены изменения в протокол опроса, благодаря чему контроллер не станет беспрерывно обращаться к подключённому устройству в ожидании передачи данных и тратить зря энергию. Вместо этого сами устройства будут посылать сигнал, когда инициирована операция передачи. Все же, в первую очередь, новый стандарт разрабатывался для устройств категории "sync-and-go", то есть для мобильных телефонов, плееров и внешних накопителей. Среди первых продуктов с его поддержкой будут и внешние накопители, для которых существующий интерфейс уже накладывает ряд ограничений. Кроме того, USB 3.0 может использоваться для трансляции HD-видео.

Оптоэлектронные приборы в копировальных аппаратах.

Статья добавлена: 28.08.2017 Категория: Статьи

Оптоэлектронные приборы в копировальных аппаратах. Оптоэлектронные приборы широко используются в современных копировальных аппаратах в качестве основы для построения различного рода датчиков. Термином «оптоэлектронные приборы» обобщаются приборы и устройства, содержащие излучатели и приемники, взаимодействующие друг с другом. Приборы, в которых выполняется лишь один вид преобразования, — излучатели, индикаторы, фотоприемники, и другие рассматривают отдельно как элементы оптоэлектронных приборов и систем. Оптопары. Оптопарой называют оптоэлектронный прибор, в котором конструктивно объединены в общем корпусе излучатель на входе и фотоприемник на выходе (рис. 1, а), взаимодействующие друг с другом оптически и электрически. Связи между компонентами оптопары могут быть прямыми или обратными, положительными или отрицательными, одна из связей (электрическая или оптическая) может отсутствовать. Иногда оптопару отождествляют с оптроном, однако последний термин является более широким. Между элементами оптрона может быть осуществлена как оптическая, так и электрическая связь (прямая или обратная, положительная или отрицательная). Вход и выход оптрона также могут быть как электрическими, так и оптическими соответственно. В настоящее время широкое распространение получили лишь оптроны с прямой оптической связью, т. е. оптопары. Основные функциональные разновидности этих приборов представлены на рис. 1 б,в. Оптопара с прямой оптической и обратной электрической связью (рис. 1,6) используется как элемент развязки, т. е. оптрон с оптическим входом и выходом, и представляет собой преобразователь световых сигналов. Это может быть простое усиление (ослабление) интенсивности света, преобразование спектра или направления поляризации, преобразование некогерентного излучения в когерентное и т. п. Если в таком оптроне фотоприемник и излучатель многоэлементные, то он может выполнять функцию преобразователя изображений. В оптроне с электрической и оптической связями (рис. 1,в) при определенных условиях может осуществляться частичная или полная регенерация (восстановление) входного сигнала за счет обратной связи, в силу чего на вольт-амперной характеристике появляется падающий участок или несколько участков — такой прибор получил название регенеративного оптрона. В регенеративном оптроне могут реализоваться любые комбинации видов входных и выходных сигналов (электрических или оптических).

Архитектура Kaby Lake (Intel).

Статья добавлена: 28.08.2017 Категория: Статьи

Архитектура Kaby Lake (Intel). Согласно планам Intel, в мобильной сфере на смену Skylake придёт новая архитектура Kaby Lake (в третьем квартале текущего года и несколько позднее — в настольном секторе). А вот 10-нм чипов Cannonlake придётся ждать ещё год: они тоже появятся в третьем квартале, но в 2017 году. Платформа Skylake дебютировала в третьем квартале 2015 года и была приурочена к выпуску новой операционной системы Microsoft Windows 10. Сейчас есть огромное количество решений на базе Skylake, от сверхэкономичных до оверклокерских, но в случае с Cannonlake Intel планирует ещё более увеличить масштабируемость платформы: базовые принципы архитектуры будут одними и теми же у самых экономичных процессоров с теплопакетом 4,5 ватта и у мощных серверных Xeon для многопроцессорных систем. Сейчас Intel, несомненно, доминирует на рынке производительных процессоров, но, согласно имеющимся данным, компания хочет начать обновление процессорных линеек уже в третьем квартале этого года. Мобильная версия Kaby Lake будет представлена в составе ноутбуков, ультрабуков и решений класса «два в одном». Как мобильные, так и настольные процессоры Kaby Lake (рис. 1,2) будут иметь несколько линеек: Kaby Lake U, Kaby Lake Y, Kaby Lake H и Kaby Lake S. Не исключены и иные варианты, такие как Skylake-C (см. табл. 1).

Технология SMART.

Статья добавлена: 28.08.2017 Категория: Статьи

Технология SMART. Для повышения надежности большинство производителей применяют в жестких дисках различные технологии в том числе и варианты технологии SMART. Обычно предусматривается автоматическая проверка целостности данных, состояния поверхности пластин, пере¬нос информации с критических участков на нормальные и другие операции без участия пользователя. В случае нарастания фатальных ошибок программа своевременно выдаст сообщение о необходимости принятия срочных мер по спасению данных. Основные положения SMART были согласованы несколько лет назад с участием всех крупных производителей дисков и компьютеров. Для анализа надежности жесткого диска используются две группы параметров. Первая характеризует параметры естественного старения жесткого диска: - число циклов включения/выключения диска; - накопленное число оборотов двигателя за время работы; - количество перемещений головок Вторая группа параметров характеризует текущее состояние накопителя: - высота головки над поверхностью диска; - скорость обмена данными между дисками и буфером (кэш-памятью); - количество переназначений плохих секторов (когда вместо испорченного сектора подставляется свободный исправный); - количество ошибок поиска; - количество операций перекалибровки; - скорость поиска данных на диске и др. Обычно вся информация записывается на служебных дорожках, недоступных аппаратным и программным средствам общего применения. SMART (Self-Monitoring, Analysis and Reporting Technology - технология самотестирования, анализа и отчетности) - это новый промышленный стандарт, описывающий методы предсказания появления ошибок жесткого диска. При активизации системы SMART жесткий диск начинает отслеживать определенные параметры, чувствительные к неисправностям накопителя или указывающие на них. На основе отслеживаемых параметров можно предсказать сбои в работе накопителя. Если на основе отслеживаемых параметров вероятность появления ошибки возрастает, SMART генерирует для BIOS или драйвера операционной системы отчет о возникшей неполадке, который указывает пользователю на необходимость немедленного резервного копирования данных до того момента, когда произойдет сбой в накопителе.

Аналоговые интегральные микросхемы в лазерных принтерах. Операционные усилители.

Статья добавлена: 28.08.2017 Категория: Статьи

Аналоговые интегральные микросхемы в лазерных принтерах. Операционные усилители. Операционным усилителем (ОУ) называют усилитель напряжения, предназначенный для выполнения различных операций с аналоговыми сигналами: их усиление или ослабление, сложение или вычитание, интегрирование или дифференцирование, логарифмирование или потенцирование, преобразование их формы и др. Все эти операции ОУ выполняет с помощью цепей положительной и отрицательной обратной связи, в состав которых могут входить сопротивления, емкости и индуктивности, диоды, стабилитроны, транзисторы и некоторые другие электронные элементы. Поскольку все операции, выполняемые при помощи ОУ, могут иметь нормированную погрешность, то к его характеристикам предъявляются определенные требования. Требования эти в основном сводятся к тому, чтобы ОУ как можно ближе соотвествовал идеальному источнику напряжения, управляемому напряжением с бесконечно большим коэффициентом усиления. А это значит, что входное со¬противление ОУ должно быть равно бесконечности, а следовательно, входной ток должен быть равен нулю. Выходное сопротивление должно быть равно нулю, а следовательно, нагрузка не должна влиять на выходное напряжение. Частотный диапазон усиливаемых сигналов должен простираться от постоянного напряжения до очень высокой частоты. Поскольку коэффициент усиления ОУ очень велик, то при конечном значении выходного напряжения напряжение на его входе должно быть близким к нулю. входная цепь ОУ обычно выполняется по дифференциальной схеме, а это значит, что входные сигналы можно подавать на любой из двух входов, один из которых изменяет полярность выходного напряжения и поэтому называется инвертирующим, а другой не изменяет полярности выходного напряжения и называется — неинвертирующим. Условное схематическое обозначение дифференциального операционного усилителя приведено на рис.1,а. Инвертирующий вход можно отмечать кружочком или писать около него знак минус (-). Неинвертирующий вход или совсем не отмечается, или около него пишется знак плюс (+). Два вывода ОУ используются для подачи на него напряжения питания +ЕП и -ЕП. Положительное и отрицательное напряжение питания обычно имеют одно и то же значение, а их общий вывод одновременно является общим выводом для входных и выходного сигналов (в дальнейшем выводы питания изображаться не будут).

3D XPoint - новый тип памяти.

Статья добавлена: 28.08.2017 Категория: Статьи

3D XPoint - новый тип памяти. Компании Intel и Micron совместными усилиями создали новый тип системы хранения данных, который в одну тысячу раз быстрее самой передовой памяти NAND Flash. Новый тип памяти, получивший название 3D XPoint, показывает скорости чтения и записи в тысячу раз превышающие скорость обычной памяти NAND, а также обладает высокой степенью прочности и плотности. Новая память в десять раз плотнее чипов NAND и позволяет на той же физической площади сохранять больше данных и при этом потребляет меньше питания. Intel и Micron заявляют, что их новый тип памяти может использоваться как в качестве системной, так и в качестве энергозависимой памяти, то есть, другими словами, ее можно использовать в качестве замены как оперативной RAM-памяти, так и SSD. В настоящий момент компьютеры могут взаимодействовать с новым типом памяти через интерфейс PCI Express, однако Intel говорит, что такой тип подключения не сможет раскрыть весь потенциал скоростей новой памяти, поэтому для максимальной эффективности памяти XPoint придется разработать новую архитектуру материнской платы.

Команды контроллеров жестких дисков для поддержки технологий S.M.A.R.T.

Статья добавлена: 28.08.2017 Категория: Статьи

Команды контроллеров жестких дисков для поддержки технологий S.M.A.R.T. Технология S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology - технология самонаблюдения, анализа и сообщений) используется для предупреждения пользователей о возможном отказе устройства. Предсказание отказов осуществляется в результате контроля за выходом ряда параметров за некоторый предел. По технологии SMART осуществляют контроль следующих параметров : время разгона до номинальной скорости, время позиционирования головок, процент ошибок операций позиционирования, «высота полета» головок, производительность обмена с учетом числа повторов, количество использованных резервных секторов и т. п. Слежение может осуществляться в рабочем режиме on-line (одновременно с выполнением команд хоста при возможном некотором замедлении). Слежение в режиме off-line выполняется устройством в паузе между обычными командами без снижения производительности. Если во время выполнения этой процедуры придет внешняя команда, то мониторинг прервется на время исполнения команды (начало исполнения команды может задержаться на время до двух секунд). Значения атрибутов, за которыми ведется наблюдение, сохраняются в служебной области носителя. Для непакетных устройств имеется команда SMART (пакетные используют для этих целей собственный протокол), подкоманды которой задаются через регистр свойств FR. Перед подачей команд в регистры CL и СН заносятся константы: CL=4Fh, CH=C2h. Из подкоманд SMART стандартизованы следующие: SMART Read Data (FR=D0h) - чтение блока данных SMART. Блок данных (512 байт) имеет стандартную структуру, в нем содержатся следующие сведения: - состояние мониторинга off-line: запускался ли, завершался ли успешно, прерывался ли и почему; - состояние самотестирования (чем кончился предыдущий тест, тестирование выполняется в данный момент); - время до завершения тестирования off-line; - возможности тестирования off-line, поддержка журнала регистрации ошибок; - рекомендуемое время, через которое имеет смысл запрашивать результат после запуска коротких и расширенных тестов; - информация, специфичная для производителя.

Идентификация мониторов.

Статья добавлена: 28.08.2017 Категория: Статьи

Идентификация мониторов. Последовательная идентификация мониторов (VESA DDC ). Интересы компьютера в целом представляет плата дисплейного адаптера, к которой и подключается монитор. С ее помощью обеспечивается возможность идентификации монитора, которая необходима для работы системы РnР, и управление энергопотреблением монитора. В начале для простейшей идентификации в интерфейс ввели три логических сигнала ID0-ID2, по которым адаптер мог определить тип подключенного монитора (в пределах номенклатуры изделий IBM). Со стороны монитора эти линии либо подключались к шине GND, либо оставлялись неподключенными. Однако из этой системы идентификации впоследствии использовали лишь сигнал ID1, по которому определяли подключение монохромного монитора. Монохромный монитор может быть опознан адаптером и иначе - по отсутствию нагрузки на линиях Red и Blue. Правда, некоторые многофункциональные цветные мониторы позволяют себе отключать нагрузочные резисторы, при этом изображение становится ярким и нечетким, появляются горизонтальные эхо-выбросы, а монитор идентифицируется как монохромный, что сопровождается «писком» POST-теста. Последовательная идентификация мониторов (VESA DDC ). Параллельная идентификация мониторов быстро изжила себя, и ее заменила последовательная по каналу цифрового интерфейса VESA DDC (Display Data Chan¬nel). Этот канал построен на интерфейсе I2C (DDC2B) или ACCESS Bus (DDC2AB), которые используют всего два ТТЛ-сигнала SCL и SDA. Интерфейс DDC1 является однонаправленным - монитор посылает адаптеру блок своих параметров по линии SDA, которые синхронизируются сигналом V.Sync. На время приема блока параметров адаптер может повысить частоту V.Sync до 25 кГц (генератор кадровой развертки по такой высокой частоте синхронизироваться не будет). Интерфейс DDC2 уже является двунаправленным, и для синхронизации используется выделенный сигнал SCL. Интерфейс DDC2AB отличается тем, что подразумевает возможность подключения периферии, не требующей высокой скорости обмена, к компьютеру по последовательной шине ACCESS Bus. При этом внешний разъем шины выносится на монитор.

Графическое ядро в микроархитектуре Haswell.

Статья добавлена: 28.08.2017 Категория: Статьи

Графическое ядро в микроархитектуре Haswell. Одно из основных нововведений в микроархитектуре Haswell — это новое графическое ядро c поддержкой DirectX 11.1, OpenCL 1.2 и OpenGL 4.0. Но самое главное, что графическое ядро в микроархитектуре Haswell масштабируемое. Существуют варианты графического ядра с кодовыми названиями GT3, GT2 и GT1. Ядро GT1 будет иметь минимальную производительность, а GT3 — максимальную. В графическом ядре GT3 появится второй вычислительный блок, за счет чего удвоится количество блоков растеризации, пиксельных конвейеров, вычислительных ядер и сэмплеров. Ожидается, что GT3 будет вдвое производительнее GT2. Ядро GT3 содержит 40 исполнительных блоков, 160 вычислительных ядер и четыре текстурных блока. Для сравнения напомним, что в графическом ядре Intel HD Graphics 4000 процессоров Ivy Bridge содержится 16 исполнительных устройств, 64 вычислительных ядра и два текстурных блока. Поэтому, несмотря на приблизительно одинаковые тактовые частоты их работы, графическое ядро Intel GT3 превосходит своего предшественника по уровню производительности. Кроме того, ядро GT3 имеет более высокую производительность благодаря интеграции памяти EDRAM (в ядре GT3e) в упаковку процессора. Ядро GT2 содержит 20 исполнительных блоков, 80 вычислительных ядер и два текстурных модуля, а ядро GT1 — только 10 исполнительных блоков, 40 вычислительных ядер и один текстурный модуль. Сами исполнительные блоки имеют по четыре вычислительных ядра наподобие тех, что используются в архитектуре AMD VLIW4.

BIOS ROM c интерфейсом SPI.

Статья добавлена: 20.05.2019 Категория: Статьи

BIOS ROM c интерфейсом SPI Когда в качестве носителя BIOS начали использовать микросхемы Flash ROM, допускающие перезапись содержимого без физического вмешательства в компьютер, то появилась возможность оперативной перезаписи (обновления) BIOS, и это привело к риску его случайного или преднамеренного искажения. Поэтому появились и новые методы защиты BIOS от несанкционированного искажения. Появились и новые типы микросхем Flash ROM и интерфейсы для их подключения.

Варианты подключения нагрузки и аккумулятора в мобильных компьютерах.

Статья добавлена: 28.08.2017 Категория: Статьи

Варианты подключения нагрузки и аккумулятора в мобильных компьютерах. Существует два варианта подключения нагрузки и аккумулятора: непосредственное подключение (в одну точку) и подключение с возможностью выбора путей протекания зарядного тока и тока нагрузки. Существует два варианта непосредственного подключения нагрузки к аккумулятору: - в первом случае нагрузка подключается после измерительного резистора RSNS (см. рис. 1), - а во втором — до него (см. рис. 2). В первом варианте входное напряжение VIN преобразуется в напряжение VOUT с высоким КПД. При подключенном сетевом адаптере обеспечивается энергопитание нагрузки и одновременно зарядка аккумулятора, в случае отключения адаптера питание нагрузки осуществляется от аккумулятора. При отключенном адаптере энергопитание нагрузки осуществляется непосредственно от аккумулятора с минимальными потерями мощности: – возможно использование технологии динамического управления током зарядки аккумулятора (Dynamic Power Management — DPM), что позволяет за счет динамического снижения тока зарядки предотвратить потенциальную вероятность перегрузки ИС по току зарядки и перегрева ее корпуса при пиковых нагрузках, а, кроме того, сохраняется возможность ограничения суммарного входного тока; – малы изменения напряжения на нагрузке; – достаточно просто на программном уровне реализуется режим токового мягкого старта. Если средний ток нагрузки длительное время достаточно велик, то процесс зарядки затягивается, и возникает ситуация, при которой аккумулятор непрерывно находится в процессе зарядки, что сокращает его срок службы. Поскольку предел ограничения суммарного тока фиксирован на аппаратном уровне, то при достаточно большом токе через нагрузку ток зарядки аккумулятора также снижается, что приводит к чрезмерному увеличению времени зарядки аккумулятора до его полной емкости, и поэтому вполне вероятна ситуация, при которой будет просто невозможно полностью его зарядить. Если при заряженном аккумуляторе ток нагрузки увеличится, то вследствие падения напряжения на внутреннем сопротивлении аккумулятора выходное напряжение может снизиться до порога, при котором будет инициироваться очередной цикл зарядки, который, в свою очередь, быстро завершится. Таким образом, возможна ситуации, при которой процесс зарядки будет стартовать циклически. При небольшом токе нагрузки интервал времени от момента уменьшения выходного напряжения (за счет падения напряжения на аккумуляторе) до необходимого порога для старта очередного процесса зарядки существенно увеличивается. В фазе предварительной зарядки (при напряжении на аккумуляторе ниже 3,0 В) ток зарядки составляет примерно 10% номинальной емкости аккумулятора, чего зачастую слишком мало для энергоснабжения продолжающего работать устройства, которое в этом случае вынуждено подпитываться от аккумулятора, а последний соответственно продолжает разряжаться. Кроме того, поскольку для предварительной фазы зарядки отводится определенный задаваемый специальным таймером интервал времени, в течение которого напряжение на аккумуляторе должно достичь порога 3,2 В, то создается ситуация, при которой напряжение на аккумуляторе не возрастает, а таймер начинает сигнализировать, что аккумулятор неисправен.

Стр. 165 из 213      1<< 162 163 164 165 166 167 168>> 213

Лицензия