Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 208 из 211      1<< 205 206 207 208 209 210 211>> 211

ЭЛТ-мониторы (CRT) еще ремонтируем.

Статья добавлена: 28.08.2017 Категория: Статьи

ЭЛТ-мониторы (CRT) еще ремонтируем. Принципы работы ЭЛТ-мониторов. Элементом, формирующим изображение в ЭЛТ-мониторе (рис. 1), является электронно-лучевая трубка (ЭЛТ). По своей сути это стеклянная колба, внутри которой вакуум (рис. 2). Электронная пушка формирует пучок электронов (электронный луч), который направляется в сторону экрана, покрытого изнутри люминофором. При столкновении электронов с люминофором последний начинает излучать свет, — чем больше энергия пучка, тем ярче свечение. Отклоняющая система направляет пучок электронов так, что он сканирует весь экран, строка за строкой. Поскольку скорость сканирования очень большая, глаз в силу своей инерционности воспринимает изображение как стабильное. В цветных ЭЛТ-мониторах слой люминофора с внутренней стороны экрана состоит из мельчайших элементов трех цветов (R,G,B). Для упрощения схем управления цветная ЭЛТ имеет три электронных пушки соответственно основным цветам. Чтобы обеспечить попадание каждого из этих трех пучков электронов только на свои элементы люминофора и исключить попадание на соседние перед люминофором помещают маску с отверстиями. Таким образом, даже если пучок электронов слегка отклонится от намеченной траектории, он все равно не сможет засветить „чужой” элемент люминофора. Всего было разработано несколько типов масок. Идеального решения не существует, и каждый тип имеет свои как сильные, так и слабые стороны. В зависимости от того, какие задачи будут решаться на компьютере, следует выбрать и монитор с соответствующей маской.

Как обеспечить нормальную работу компьютера.

Статья добавлена: 28.08.2017 Категория: Статьи

Как обеспечить нормальную работу компьютера. Для нормальной работы компьютера, напряжение питающей сети должно быть достаточно стабильным, а уровень помех в ней не должен превышать предельно допустимой величины. При подключении компьютера к сети переменного тока, от которой питаются устройства большой мощности, перепады напряжения, возникающие при включении и выключении этого оборудования, немедленно сказываются на его работе. При работе мощных агрегатов в сети могут возникать переходные процессы (всплески напряжения) амплитудой до 1000 В и выше, которые могут просто вывести из строя блок питания компьютера. Если для питания компьютера используется отдельная линия, то и это не исключает появления в ней выбросов напряжения, поскольку это зависит от качества всей сети энергоснабжения здания или района. Выбирая место и способ подключения системы к сети, необходимо соблюдать следующие правила: • подключение компьютеров осуществлять к отдельным линиям питания со своими предохранителями (желательно автоматическими); • перед подключением необходимо проверить сопротивление шины заземления (оно должно быть низким); • выходное напряжение линии должно находиться в допустимых пределах, и не должно быть помех и всплесков напряжения; • подключение компьютера к сети должно производится с помощью трехштырьковых вилок, нельзя пользоваться переходниками для розеток с двумя гнездами, поскольку система при этом останется без заземления; • не пользуйтесь без крайней необходимости удлинителями (выбирайте те из них, которые рассчитаны на подключение мощных потребителей энергии) ведь уровень помех в сети возрастает при увеличении внутреннего сопротивления линии, т.е. чем длиннее соединительные провода и чем меньше их сечение, тем он выше; • для подключения устройств, не имеющих отношения к компьютерам, лучше использовать другую розетку.

Что определяет номер (тип) сокета LGA процессора?

Статья добавлена: 28.08.2017 Категория: Статьи

Что определяет номер (тип) сокета LGA процессора? Socket - это разъём процессора, разработанный корпорацией Intel выполненный по технологии Land Grid Array (LGA). Он представляет собой разъём с подпружинеными или мягкими контактами, к которым с помощью специального держателя с захватом и рычага прижимается процессор, не имеющий штырьковых контактов. Увеличение количества его контактных площадок связано с переносом компонентов «Северного моста» непосредственно на кристалл процессора.

Особенности организации вывода данных на принтеры.

Статья добавлена: 28.08.2017 Категория: Статьи

Особенности организации вывода данных на принтеры. Лазерный принтер – это растровое страничное устройство, поэтому, в простейшем случае, поток данных, готовых к печати, должен содержать лишь перечисление координат всех точек, подлежащих закрашиванию. Но даже если исходный документ представлен в формате bitmap, далеко не всегда его можно использовать «как есть», и перенести изображение на бумагу «точка в точку» едва ли получится. Его, как правило и как минимум, придется пересчитать в другое разрешение (масштабировать). Струйные и матричные являются обычно принтерами построчной печати. Драйверы принтеров в Windows являются частью операционной системы, а не приложения поэтому в системе можно найти драйвер практически к любой модели принтера. Поддержка принтера одной модели в операционных системах Windows реализуется по-разному отсюда необходимость устанавливать драйвер принтера для данной операционной системы. Процесс установки драйвера в этих операционных системах практически одинаков. В окне “Панель управления” (Control Panel) есть пиктограмма “Принтеры” (Printers). С помощью этой пиктограммы устанавливаются все локальные, сетевые и даже физически не подключенные к компьютеру принтеры. При установке принтера, который поддерживает несколько языков описания страниц, следует установить драйвер для каждого поддерживаемого языка (PostScript, PCL). Для печати документа необходимо выбирать соответствующий драйвер. Если компьютер подключен к локальной сети, то необходимо установить драйверы всех принтеров, к которым можно получить доступ через сеть. С помощью пиктограммы «Принтеры» в окне «Панель управления» можно просмотреть ресурсы сети и установить соответствующие драйверы принтеров. В системах Windows можно разрешить совместное использование принтера в локальной сети. В диалоге используя окно свойств принтера, которое состоит из нескольких вкладок, можно изменять определенные группы параметров драйвера принтера. Количество вкладок и находящиеся в них параметры зависят от типа установленного принтера, однако практически для всех моделей принтеров существует одинаковый набор параметров. Чаще всего это размер и ориентация бумаги, выбор лотка с бумагой и количество копий. Многие драйверы принтеров позволяют управлять печатью графики и шрифтов: • выбор разрешения, поддерживаемое принтером (низкое разрешение обеспечивает более высокую скорость печати и требует меньшего объема памяти); • выбор типа передачи полутонов для цветного или полутонового изображения (комбинация этого параметра с разрешением помогает добиться наилучшего качества печати изображений); • управление интенсивностью графического изображения в печатаемом документе; • выбор в графическом режиме способа растеризации графических изображений (на принтере или на компьютере); • управление печатью шрифтов TrueType (в окне свойств многих принтеров представлена вкладка «Шрифты»); • загрузка шрифтов TrueType в виде контурных шрифтов ( драйвер загружает в принтер контуры шрифтов, и принтер самостоятельно выполняет их растеризацию при этом достигается наилучшая производительность печати); • загрузка шрифтов TrueType в виде растровых шрифтов (драйвер загружает уже растеризированные на компьютере шрифты в принтер, но данный вариант немного замедляет скорость печати, зато при этом требуется меньший объем памяти); • печатать шрифтов TrueType в виде графики (драйвер загружает уже растеризированные компьютером шрифты в принтер в виде графики, но это самый медленный тип печати, хотя установка данного параметра позволяет устранить проблемы, возникающие при печати документов); • установка качество печати текста документа (меньшее значение увеличивает скорость печати, но при этом теряется качество текста); • установить объем памяти, установленной в принтере (при увеличении объема памяти необходимо изменить значение этого параметра); • установка контроля за использованием памяти принтера (при печати драйвер принтера вычисляет необходимый объем памяти и сравнивает его с установленным в принтере и если вычисленный объем памяти превышает установленный, то печать прекращается и генерируется сообщение об ошибке - при появлении ошибки, связанной с нехваткой памяти, требуется изменить параметры разрешения, передачи графики и шрифтов). Типовой процесс печати документа на лазерном принтере наиболее сложный и состоит из следующих этапов: • подключение; • обработка данных; • форматирование; • растеризация; • лазерное сканирование; • наложение тонера; • закрепление тонера. Приблизительно такая последовательность действий выполняется большинством лазерных принтеров. Массовые модели принтеров интенсивно используют в процессе печати компьютер, а более дорогие и совершенные модели большую часть операций выполняют с помощью собственного встроенного аппаратного и программного обеспечения.

Полупроводниковые лазеры в принтерах и копирах.

Статья добавлена: 20.01.2020 Категория: Статьи

Полупроводниковые лазеры в принтерах и копирах. Слово Laser означает Light Amplification by Stimulated Emission of Radiation – усиление света вынужденным излучением, или в русскоязычной терминологии - это оптический квантовый генератор. Энергия лазера представляет собой электромагнитное излучение, которое может быть видимым или невидимым, и представима в виде очень коротких импульсов, называемых фотонами (фотон – минимальная частица энергии). Видимый луч лазера может быть красным или голубым, невидимый луч лазера может быть, например, инфрокрасным. Лазеры широко применяются в принтерах, копирах, оптических дисках и др. устройствах. Существуют два основных типа источников излучения (полупроводниковых излучателей когерентного света), удовлетворяющие требованиям современных оптоэлектронных устройств, которые широко используются в настоящее время; - светоизлучающие диоды (CD) - полупроводниковые лазерные диоды (LD). Основной отличительной чертой между светодиодами и лазерными диодами является ширина спектра излучения. Светоизлучающие диоды имеют широкий спектр излучения, в то время как лазерные диоды имеют значительно более узкий спектр Лазеры и особенно СD - излучают интенсивное инфракрасное излучение, невидимое для человеческого глаза. Излучение может постепенно воздействовать на сетчатку глаза и приводить к ее повреждению и даже к потере зрения. Нельзя допускать попадания излучения из источника или из волокна, подключенного к источнику, в глаз. Перед осмотром выходного отверстия источника или волокна, убедитесь, что источник излучения отключен. Включен источник или нет зрительно не видно поэтому необходимо быть предельно осторожным. Прежде всего, перед работой по ремонту оптической системы, необходимо познакомиться с мерами предосторожности, которые необходимо соблюдать, чтобы не нанести вред своему зрению. Приступая к настройке и диагностике, необходимо сначала познакомиться с рядом особенностей, связанных с обслуживанием любых лазерных устройств. Нанесенный на лазер желтым цветом знак «CAUSION» («предостережение») означает, что немедленное закрывание глаз защитит глаза от повреждения. Нанесенный на лазер красный знак «DANGER» («опасно») предупреждает, что даже кратковременное попадание луча в глаза опасно. Если вы видите символ лазера (рис. 1) – это предупреждение об опасности, с которой можно столкнуться при техническом обслуживании оборудования.

API (Application Programming Interface).

Статья добавлена: 28.08.2017 Категория: Статьи

API (Application Programming Interface). API (Application Programming Interface) – графический интерфейс программ - предоставляeт разработчикам аппаратного и программного обеспечения средства создания драйверов и программ, работающих быстрее на большом числе платформ. 3D API позволяет программисту создавать трехмерное программное обеспечение, использующее все возможности 3D-ускорителей не прибегая к низкоуровнему программированию. 3D API делятся на стандартные (универсальные: OpenGL, Direct 3D и др.) и собственые (специализированные: Glide, Rredline и др.). Стандартные API поддерживают широкий спектр 3D-ускорителей и освобождают программистов от низкоуровнего программирования. Собственный 3D API предназначен для одного семейства 3D-ускорителей и освобождает программистов от программирования на физическом уровне. Использование 3D API требует применения драйверов для этого 3D API. Наличие драйверов для Direct 3D и OpenGL для Windows 98 является обязательным требованием ко всем 3D-ускорителям. В настоящее время существует несколько API: - OpenGL (фирма SGI), - Direct 3D (фирма Microsoft), - Glide (фирма 3Dfx). Glide поддерживается только набо¬ром микросхем, выпускаемым фирмой 3Dfx, а остальные API поддерживаются большинством со¬временных видеоадаптеров. Direct 3D является частью API, называемого DirectX. Современное программное обеспечение широко использует графические интерфейсы Х Windows и OpenGL.

Освоение процедуры поиска и «спасения» файла (SER.doc) из раздела NTFS диска с поврежденной структурой.

Статья добавлена: 22.06.2022 Категория: Статьи

Освоение процедуры поиска и «спасения» файла (SER.doc) из раздела NTFS диска с поврежденной структурой. Для работы может быть использована любая утилита (для FAT, NTFS), работающая на уровне секторов (LBA) дисков загруженная с «флэшки» (так как логические структуры диска были запорчены, то пришлось работать на уровне секторов диска). Нахождение раздела NTFS можно определить по информации таблицы разделов, которая располагается в MBoot-секторе (MBR) жесткого диска (который находится в блоке данных первого сектора, нулевого цилиндра, нулевой поверхности) с адреса 1BEh (см. рис. 1). Смотрим вторую (16-ти байтную) строку таблицы разделов, которая начинается с адреса 1CEh. В байте по адресу 1D2h содержится код 07, что означает тип файловой системы раздела – NTFS. Четыре байта с адреса 1D8h содержат количество кластеров предшествующих этому разделу жесткого диска: 00 10 80 02 h (т. е. разделу предшествуют 02801000 h секторов - мы знаем, что любой раздел начинается с BOOT-сектора, находим его (см. рис. 2).

Принципы построения сканеров в цифровых копировальных аппаратах.

Статья добавлена: 28.08.2017 Категория: Статьи

Принципы построения сканеров в цифровых копировальных аппаратах. Системы сканирования цифровых копировальных машин обычно имеют неподвижную верхнюю часть. Изображение освещается, и отражение попадает через оптическую систему на принимающие фотоэлектрические приборы, например формирует электрический заряд в ПЗС (рис.1). От светлых участков оригинала отражается больше света, чем от темных, поэтому и на соответствующие ПЗС воздействует свет различной яркости и формируются соответствующей величины заряды. Сканер обязательно должен начать движение из начального положения. На корпусе машины установлен датчик, фиксирующий начальное положение, а на сканере имеется активатор датчика. Если при включении датчик начального положения не активирован, машина сначала приводит сканер в начальное положение. После этого машина получает сигнал «начать прямое движение сканера». При этом лампа экспонирования освещает документ. Вскоре после начала движения упомянутый ранее активатор сигнализирует другому датчику (датчику регистрации) что сканер подошел к определенной точке. Этот сигнал передается на главную плату. В машинах с неподвижным верхом обычно имеется шлейф проводов, который подводит электропитание к лампе. Шлейф двигается вперед-назад вместе с движением сканера и имеет тенденцию ломаться. Лампа в этом случае обычно выключается, а машина показывает на дисплее диагностический код неисправности лампы. Не зависимо от того, является верх движущимся или стационарным, сканер должен как-то приводиться в движение для этого сейчас используется шаговый двигатель. Процесс сканирования происходит следующим образом. Оригинал располагается на прозрачном неподвижном стекле, вдоль которого передвигается сканирующая каретка с источником света. Оптическая система сканера, которая состоит из объектива и зеркал, или призмы, проецирует световой поток от сканируемого оригинала на приёмный элемент. Приёмный элемент преобразует уровень освещенности в уровень заряда в ПЗС. Далее, после возможной коррекции и обработки, аналоговый сигнал поступает на аналого-цифровой преобразователь (АЦП). С АЦП информация выходит уже в двоичном виде, запоминается в оперативной памяти и, после обработки в контроллере сканера через интерфейс с главной платой будет использована в блоке управления лазером. Источником света в сканерах является обычная флуоресцентная лампа. Ее главный недостаток - слабая стабильность характеристик освещения и ограниченный срок службы. В современных моделях – используется лампа с холодным катодом, имеющая лучшие параметры и значительно больший срок службы. В обычной оптической системе световой поток от оригинала проецируется на матрицу CCD (ПЗС - прибор с зарядовой связью), которая преобразует его в электрический сигнал. Обычно используется один фокусирующий объектив (или линза), который проецирует полную ширину области сканирования на полную ширину матрицы CCD. Важным параметром сканера является его разрешение, которое можно разделить на оптическое разрешение, механическое разрешение, физическое разрешение и интерполяционное. Оптическое разрешение – это количество элементов в линии матрицы, поделённое на ширину рабочей области. Меньшая из всех приводимых цифр разрешения определяется матрицей и шириной рабочей зоны.

Характеристики сканеров копиров и МФУ.

Статья добавлена: 28.08.2017 Категория: Статьи

Характеристики сканеров копиров и МФУ. Характеристики сканера обычно определяют тремя основными показателями: - разрешением, - глубиной цвета, -динамическим диапазоном. Разрешение сканера характеризует дискретность сканирования точек оригинала. В сканерах различают два типа разрешения - оптическое и интерполированное. Оптическое разрешение описывает возможности аппаратной (оптической) части сканера. Для увеличения четкости деталей оригинала применяются специальные программные алгоритмы, это второе разрешение называется интерполированным. Обычно оно увеличивает максимальное разрешение сканера в четыре раза (например, оптическое разрешение сканера 600 dpi, а максимальное интерполированное - 2 400 dpi). Поскольку интерполированное разрешение обеспечивается программными методами, при его использовании качество сканированного оригинала может быть несколько хуже, но практически сканеры обеспечивают приемлемое качество и при интерполированном разрешении. Истинное оптическое разрешение, часто выражается в dpi (dots per inch - точек на дюйм), и определяет число элементарных участков поверхности сканируемого оригинала, информация о которых воспринимается одной линейкой (при цветном трехпроходном сканировании), или тремя светочувствительными линейками ПЗС-матрицы (по одной линейке на красный, зеленый и синий цвет). Разрешение сканера правильнее отражается не в dpi, так как эта единица измерения более характерна для принтеров, которые формируют цветовые оттенки и элементы изображения из мельчайших растровых точек, а в ppi (pixels per inch - пикселов на дюйм) - эта единица измерения, оперирует прямоугольными элементами (пикселами) конкретной величины. Величина оптического разрешения сканера и размер пиксела напрямую определяются числом светочувствительных элементов ПЗС-матрицы, размещенной параллельно одной из сторон ложа сканера. Это разрешение имеет естественные границы, которые можно расширить лишь сокращая размер сканируемой области, приходящейся на длину светочувствительной линейки. Делается это с помощью оптических систем с переключаемыми линзами, которые обеспечивают экспонирование встроенных ПЗС-структур световым потоком, сканирующим либо всю ширину ложа, либо только его часть (как правило, центральную). Существует оригинальный способ увеличения разрешения цветных (монохромных) сканеров в котором на каждый из трех цветов установлена не одна, а целых две ПЗС-линейки, сдвинутые друг относительно друга на половину шага.

Регистры ввода-вывода универсального хост-контроллера шины USB

Статья добавлена: 28.08.2017 Категория: Статьи

Регистры ввода-вывода универсального хост-контроллера шины USB. USB выстраивает необычные отношения между устройством и драйвером. Драйвер не управляет устройством напрямую, а имеет доступ только к четырем типам операций приема-передачи данных: передача массива, управление, прерывание и изохронные передачи. Все типы передач реализованы на уровне программного интерфейса. Стандартизация классов устройств USB и программного обеспечения способствует росту популярности данного способа расширения персональных компьютеров среди широкого круга пользователей и производителей компьютерной техники. Драйвер интерфейса USB управляет работой хост-контроллера через регистры. Регистры универсального хост-контроллера принят разделять на две группы: группу конфигурационных регистров PC (USB PCI Configuration Registers) и группу регистров пространств ввода-вывода (USB Host Controller IO Space Registers). Ниже рассматриваются регистры ввода-вывода хост-контроллера. Непосредственная работа с конфигурационными регистрами из прикладных программ нежелательна (может привести к «зависанию» системы). Для описания режима доступа к данным в регистрах USB используются следующие стандартные обозначения: RO - возможно только считывание данных; WO - возможна только запись данных; R/W - разрешено выполнение как записи, так и считывании данных; R/WC - разрешено считывание данных и сброс отдельных разрядов регистра (запись единицы в некоторый разряд регистра приводит к тому, что этот разряд сбрасывается в ноль). Список регистров ввода-вывода хост-контроллера шины USB при веден в табл.1. Доступ к этим регистрам осуществляется через группу портов ввода/вывода, базовый адрес которой задан в конфигурационном регистре USBBA.

Позиционные системы счисления – двоичная и шестнадцатеричная

Статья добавлена: 28.08.2017 Категория: Статьи

1. Процессоры работают с командами и данными, представленными в двоичной системе счисления (двоичном виде). В двоичной системе используют только две цифры 1 и 0. Двоичная система является (как и десятичная, в которой используют десять цифр: 1,2,3,4,5,6,7,8,9,0) позиционной системой счисления. Например, десятичное число 5643 состоит из четырех цифр, каждая цифра является десятичным разрядом (5 – старший разряд, а 3 – младший разряд десятичного числа). Младший разряд – левый - это разряд с весом «1», следующий, более старший разряд - с весом каждой единицы равным «10», следующий, более старший разряд - с весом каждой единицы равным «100» и т. д.. Таким образом, подробно, десятичное число 5643 можно записать следующим образом: 5 х 1000 + 6 х 100 + 4 х 10 + 3 х 1 = 5643 В двоичной системе счисления все точно также.

Простые меры повышения надежности функционирования дисковой подсистемы.

Статья добавлена: 28.08.2017 Категория: Статьи

Простые меры повышения надежности функционирования дисковой подсистемы. Простые меры повышения надежности функционирования дисковой подсистемы не требующие серьезных материальных затрат и выполнения сложных операций.

Стр. 208 из 211      1<< 205 206 207 208 209 210 211>> 211

Лицензия