Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 3 из 124      1<< 1 2 3 4 5 6>> 124

Новый набор команд - Intel Advanced Vector Extensions 512 (Intel AVX-512).

Статья добавлена: 25.12.2017 Категория: Статьи

Новый набор команд - Intel Advanced Vector Extensions 512 (Intel AVX-512). Главная функция микропроцессора — выполнение заданного для него набора команд: - выполняя последовательность команд (т. е. Программу) он вычисляет, управляет внешними устройствами, рассчитывает зарплату и т. п. , он может выполнять и бессмысленную последовательность своих команд - ему все равно — он автомат (принцип программного управления — мы пишем программу — он исполняет); - для реализации Главной функции процессор выполняет целый ряд аппаратных функций: формирует адреса для выборки последовательности команд, инициирует на Системном интерфейсе операцию «Чтение команды» и др.. В различных отраслях науки, производства, космической техники продолжает возрастать потребность в сложной и повышенной вычислительной мощности. Сложный алгоритм можно, например, реализовать используя сотню простых команд, но и с помощью, например, десяти сложных команд каждая из которых выполняет действия для выполнения которых потребовалось бы 15-30 и более простых команд. Чтобы поддержать повышающийся спрос и усложняющиеся алгоритмы использования, необходимо было предоставлять оптимизированные под решение новых проблемных задач инновационные решения, реализуемые и в наборе команд Intel® AVX-512, которым оснащены новейшие процессоры и сопроцессоры Intel® Xeon Phi™1, а также масштабируемые процессоры Intel® Xeon®. Intel® AVX-512 - это новый набор команд, который повышает производительность вычислений в различных областях деятельности, включая научное моделирование, финансовую аналитику, искусственный интеллект и глубинное обучение, 3D-моделирование и анализ данных, обработку изображений, аудио и видео, сжатие данных и шифрование. Набор инструкций AVX-512 состоит из нескольких отдельных наборов, каждый из которых имеет свой собственный уникальный бит функции CPUID (однако их обычно группируют, поддерживая генерацию процессора: F, CD, ER, PF, BW, DQ, VL, IFMA, VBMI 4VNNIW, 4FMAPS … ). AVX-512 состоит из нескольких расширений, которые не все должны поддерживаться всеми реализующими их процессорами (см. табл. 1). Во всех реализациях требуется только базовое расширение AVX-512F (AVX-512 Foundation).

РЕКОМЕНДАЦИИ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ СЛОЖНОЙ КОМПЬЮТЕРНОЙ И КОПИРОВАЛЬНОЙ ТЕХНИКИ.

Статья добавлена: 22.12.2017 Категория: Статьи

РЕКОМЕНДАЦИИ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ СЛОЖНОЙ КОМПЬЮТЕРНОЙ И КОПИРОВАЛЬНОЙ ТЕХНИКИ. Для освоения знаний по компьютерной и копировальной технике в объеме, который необходим для ее ремонта, обычно не требуется специальное высшее образование по вычислительной технике, множество примеров подтверждают это, но необходимым условием успешного освоения знаний по технологиям ремонта компьютеров является личный интерес и большое желание стать профессионалом в этой области техники. Профессиональная работа требует постоянного труда, постоянного изучения новой информации, новых устройств, новых технологий, используемых в компьютерной, копировальной технике и ее ремонте. Несомненно, если у Вас высшее образование (даже пусть не в области вычислительной технике) и Вы уже обладаете умением самостоятельно изучать предмет, то процесс обучения пойдет гораздо быстрее и успешнее. «Метод исследований и диагностики явлений – самая первая, основная вещь. От метода, от способа действий зависит вся серьезность исследования. При хорошем методе и не очень талантливый человек может сделать очень много. А при плохом методе и гениальный человек будет работать впустую, и не получит ценных, точных знаний» (И. П. Павлов).

Фотосимисторы.

Статья добавлена: 22.12.2017 Категория: Статьи

Фотосимисторы. Фотосимисторы — это симисторы с фотоэлектронным управлением, в которых управляющий электрод заменен инфракрасным светодиодом и фотоприемником со схемой управления. Основным достоинством таких приборов является гальваническая развязка цепи управления от силовой цепи. В качестве примера рассмотрим устройство фотосимистора, выпускаемого фирмой «Сименс» под названием СИТАК. Структурная схема прибора СИТАК приведена на рис. 1, а, а его условное схематическое изображение — на рис. 1, б. Такой прибор потребляет по входу управления светодиодом ток около 1,5 мА и коммутирует в выходной цепи переменный ток 0,3 А при напряжении до 600 В. Такие приборы находят широкое применение в качестве ключей переменного тока с изолированным управлением. Они также могут использоваться при управлении более мощными тиристорами или симисторами, обеспечивая при этом гальваническую развязку цепей управления. Малое потребление цепи управления позволяет включать СИТАК к выходу микропроцессоров и микроконтроллеров. В качестве примера на рис. 2 приведено подключение прибора СИТАК к микропроцессору для регулирования тока в нагрузке, подключенной к сети переменного напряжения 220 В при максимальной мощности до 66 Вт.

Подключение источника оптического излучения к ВОЛС.

Статья добавлена: 22.12.2017 Категория: Статьи

Подключение источника оптического излучения к ВОЛС. Передающие оптоэлектронные модули (ПОМ), применяемые в волоконно-оптических системах, предназначены для преобразования электрических сигналов в оптические, которые должны быть введены в волокно с минимальными потерями. Для обеспечения передачи оптического сигнала по волоконно-оптическому кабелю от передатчика к приемнику используются пассивные оптические компоненты, которые включают в себя оптические соединители, розетки, шнуры, распределительные панели, кроссовые шкафы, соединительные муфты, оптические разветвители, аттенюаторы, системы спектрального уплотнения.По мере роста сложности и увеличения протяженности волоконно-оптической кабельной системы роль пассивных компонентов возрастает. Практически все системы волоконно-оптической связи, реализуемые для магистральных информационных сетей, локальных вычислительных сетей, а также для сетей кабельного телевидения, охватывают сразу все многообразие пассивных волоконно-оптических компонентов. Самым важным вопросом передачи информации по ВОЛС является обеспечение надежного соединения оптических волокон. Оптический соединитель - это устройство, предназначенное для соединения различных компонентов волоконно-оптического линейного тракта в местах ввода и вывода излучения. Такими местами являются: оптические соединения приемников и передатчиков с волокном кабеля, соединения отрезков оптических кабелей между собой, а также с другими компонентами. Различают неразъемные и разъемные соединители. Неразъемные соединители используются в местах постоянного монтажа кабельных систем. Основным методом монтажа, обеспечивающим неразъемное соединение, является сварка. Разъемные соединители (коннекторы) допускают многократные соединения/разъединения. Промежуточное положение занимают соединения типа механический сплайс. При разрыве волокон, например в полевых условиях, можно восстановить повреждения, не прибегая к сварке волокон. Механический сплайс - это прецизионное, простое в использовании, недорогое устройство для быстрой стыковки обнаженных многомодовых и одномодовых волокон в покрытии с диаметром 250 мкм-1 мм посредством специальных механических зажимов, предназначеное для многоразового (организация временных соединений) или одноразового (организация постоянного соединения) использования. Его стеклянный капилляр, заполненный иммерсионным гелем, обеспечивает вносимые потери < 0,2 дБ и обратные потери < -50 дБ. По надежности и по вносимым потерям механический сплайс уступает сварному соединению. Важным моментом в подключении источника оптического излучения к оптической системе является обеспечение максимально возможного уровня мощности, передаваемой от источника к оптическому волокну. Оптические характеристики источника и волокна должны быть при этом согласованы.

Файловая система extX. Как адресуются блоки файлов?

Статья добавлена: 21.12.2017 Категория: Статьи

Файловая система extX. Как адресуются блоки файлов? В extX (как и многих других файловых системах из семейства UNIX), так называемый индексный дескриптор (inode) играет ту же самую роль, что и файловая запись в NTFS. Здесь сосредоточена вся информация о файле: тип файла (обычный файл, каталог, символьная ссылка и т. д.), его логический и физический размер, схема размещения на диске, время создания, модифика­ции, последнего доступа или удаления, права доступа, а также ссылки на файл. Количество полей в каждом индексном узле является статической величиной. Дополнительная информация сохраняется в расширенных атрибутах и косвенных указателях, о которых речь пойдет далее в этой главе. Состояние выделения индексного узла определяется по карте индексных узлов, местонахождение которой задается в дескрипторе группы. Поле размера в новых версиях extX является 64-разрядным, но в старых версиях оно содержало всего 32 бита, что делало невозможной работу с файлами, размер которых превышал 4 Гбайт. В новых версиях старшие 32 бита размера хранятся в поле, которое ранее не использовалось. Индексный узел содержит информацию о размере файла, его владельце и временных штампах. Файловая система extX проектировалась еще в расчете на эффективную работу с небольшими файлами. По этой причине в каждом индексном узле могут храниться адреса первых 12 блоков, выделенных файлу. Эти адреса называются прямыми указателями. Если для хранения файла потребуется более 12 блоков, выделяется специальный блок для хранения остальных адресов. Указатель на него называется косвенным указателем блоков. Все адреса блоков занимают 4 байта, а общее количество адресов в блоке зависит от размера блока. Косвенный указатель хранится в индексных узлах. Если файл содержит больше блоков, чем помещается в 12 прямых указателях и в косвенном блоке, используется механизм двойной косвенной адресации. Другими словами, индексный узел ссылается на блок, содержащий список косвенных указателей на блоки; каждый такой указатель ссылается на блоки, содержащие список прямых указателей. Если ли же файлу потребуется еще больше места, можно воспользоваться тройной косвенной адресацией: такой блок содержат набор адресов блоков с двойной адресацией, которые, в свою очередь, содержат адреса блоков косвенной адресации. Графическое представление каждой из этих структур данных показано на рис. 1. Каждый индексный узел содержит : - 12 прямых указателей, - один косвенный указатель, - один указатель двойной адресации, - и один указатель тройной адресации.

Замена блока питания компьютера. Его параметры для обеспечения надежной работы системы.

Статья добавлена: 21.12.2017 Категория: Статьи

Замена блока питания компьютера. Его параметры для обеспечения надежной работы системы. При замене блока питания компьютера (или покупке) необходимо обращать внимание на ряд важных для надежной работы системы параметров источника питания: 1. Диапазон изменения входного напряжения (рабочий диапазон), при котором может работать источник питания (для напряжения 110 В диапазон изменения входного напряжения обычно от 95 до 140 В; для 220 В - от 180 до 270 В). 2. Среднее время наработки на отказ, или среднее время безотказной работы, или среднее время работы до первого отказа (параметр MTBF (Mean Time Between Failures) либо MTTF (Mean Time To Failure)). Этот расчетный параметр указывают в часах, в течение этого времени ожидается, что источник питания будет функционировать нормально (например, 100 тыс. часов или более). Фактически изготовители применяют ранее разработанные стандарты, чтобы вычислить вероятность отказов отдельных компонентов источника питания. При вычислении среднего времени безотказной работы для источников питания часто используются данные о нагрузке блока питания и температуре среды, в которой выполнялись испытания. 3. Допустимый пиковый ток включения, обеспечиваемое источником питания в момент его включения (выражается в амперах (А)). 4. Время удержания выходного напряжения в пределах точно установленных диапазонов напряжений после отключения входного напряжения (в миллисекундах). Для современных блоков питания обычно 15-25 мс. 5. Переходная характеристика. Количество времени (в микросекундах), которое требуется источнику питания, чтобы установить выходное напряжение в точно определенном диапазоне после резкого изменения тока на выходе (т.е, количество времени, требуемое для стабилизации уровней выходных напряжений после включения или выключения системы). Источники питания рассчитаны на равномерное (в определенной степени) потребление тока устройствами компьютера. Когда устройства сокращают потребление мощности (например, в дисководе выключается двигатель или в LCD-мониторе выключена лампа задней подсветки), блок питания может в течение короткого времени подать слишком высокое выходное напряжение (это явление называется выбросом). Переходная характеристика - это время, которое источник питания затрачивает на то, чтобы значение напряжения возвратилось к точно установленному уровню. 6. Защита от перенапряжений. Это значения напряжения (для каждого вывода свое), при которых срабатывают схемы защиты и источник питания отключает подачу напряжения на конкретный вывод. Значения обычно указываются в процентах (например, 120% для +3,3 и +5 В) или, как и напряжения (например, +4,6 В для вывода +3,3 В; 7,0 В для вывода +5 В). 7. Максимальный ток нагрузки . Это самое большое значение тока (в амперах), который может быть подан на конкретный вывод (без нанесения ущерба системе). Этот параметр указывает конкретное значение силы тока для каждого выходного напряжения (по этим данным вычисляется общая мощность, которую может выдать блок питания, и количество устройств, которые можно подключить к нему). 8. Минимальный ток нагрузки . Самое меньшее значение тока (в амперах), который может быть подан на конкретный вывод (без нанесения ущерба системе). Если ток, потребляемый устройствами на конкретном выводе, меньше указанного значения, то источник питания может быть поврежден или может автоматически отключиться. 9. Стабилизация по нагрузке (стабилизация напряжения по нагрузке). Если ток на конкретном выводе питания увеличивается или уменьшается, то слегка изменяется и напряжение. Стабилизация по нагрузке - изменение напряжения для конкретного вывода при перепадах от минимального до максимального тока нагрузки (и наоборот). Значения выражаются в процентах, причем обычно они находятся в пределах от ±1 до ±5% для выводов +3,3, +5 и +12 В. 10. Стабилизация линейного напряжения. Это характеристика, описывающая изменение выходного напряжения в зависимости от изменения входного напряжения (от самого низкого до самого высокого значения). Источник питания должен корректно работать при любом переменном напряжении в диапазоне изменения входного напряжения, причем на выходе оно может изменяться на 1% или меньше. 11. КПД (Эффективность). Это отношение мощности, подводимой к блоку питания, к выходной мощности (выражается в процентах). Для современных источников питания КПД обычно равно 65-85% (15-35% подводимой мощности преобразуются в тепло в процессе превращения переменного тока в постоянный). Но увеличение эффективности (КПД) не должно достигаться за счет точности стабилизации независимо от нагрузки на блок питания и других параметров. 12. Пульсация и шум (Ripple and Noise), или пульсация (Ripple) напряжения (AC Ripple), или PARD (Periodic and Random Deviation - периодическая и случайная девиация) , или шум, уровень шума). Среднее значение пиковых (максимальных) отклонений напряжения на выводах источника питания (измеряется в милливольтах – это среднеквадратичное значение). Эти колебания напряжения могут быть вызваны переходными процессами внутри источника питания, колебаниями частоты подводимого напряжения и другими случайными помехами.

Cигнал PSI (Power Status Indicator) процессора.

Статья добавлена: 21.12.2017 Категория: Статьи

Cигнал PSI (Power Status Indicator) процессора. Сигнал PSI позволяет повысить эффективность регулятора напряжения питания процессора и улучшить тем самым энергоэкономичность компьютеров. Регулировка подачи питания на процессор производится по сигналу PSI (Power Status Indicator) процессора, который генерируется, когда процессор находится в режиме Deeper Sleep. Сигнал о величине тока поступает на процессор, а тот, в свою очередь, определяет, в каком состоянии находится – в стандартном или с низкой нагрузкой. В случае низкой нагрузки сигнал PSI# поступает обратно на ШИМ-контроллер, который может отключить часть фаз за ненадобностью и тем самым снизить энергопотребление всей схемы питания. Пример использования PSI в 6-фазном PWM-контроллере Intersil ISL6336A. PWM-контроллер Intersil ISL6336A может динамически отслеживать текущую загрузку процессора (ток, потребляемый процессором) и в зависимости от этого активировать необходимое число фаз питания (PWM-каналов). Например, когда процессор загружен несильно, а значит, потребляемый им ток невелик, вполне можно обойтись и одной фазой питания, а потребность в шести фазах возникает только при сильной загрузке процессора, когда потребляемый им ток достигает максимального значения. Динамическое переключение числа фаз питания в регуляторе напряжения производится с целью оптимизации его КПД или энергоэффективности. Дело в том, что любой регулятор напряжения сам потребляет часть преобразуемой им электроэнергии, которая выделяется в виде тепла. Функциональная блок-схема 6-фазного PWM-контроллера Intersil ISL6336A приведена на рис. 1, а типовая схема использования 6-фазного PWM-контроллера Intersil ISL6336A показана на рис. 2.

Источник дежурного питания (пример).

Статья добавлена: 20.12.2017 Категория: Статьи

Источник дежурного питания (пример). Источник дежурного питания предназначен для создания начального напряжения питания при запуске ШИМ-контроллера и формирования напряжения питания +5VSB для системной платы, когда компьютер находится в «спящем» режиме и питания первичной обмотки согласующего трансформатора. Этот источник состоит из однотактного преобразователя, подключенного к выпрямителю первичной сети, и стабилизатора вторичного напряжения.

Сканеры с контактными датчиками фирмы ROHM.

Статья добавлена: 20.12.2017 Категория: Статьи

Сканеры с контактными датчиками фирмы ROHM. В данной статье пойдет речь о разработке фирмы ROHM — о контактных датчиках изображения. Что представляет собой контактный датчик изображения и чем он отличается отдатчиков ПЗС (прибор с зарядовой связью, англ. CCD - сокращение от Charge-Coupled Device), традиционно применяемых в сканирующих головках. Новой разработкой, предлагаемой фирмой Rohm, явился сначала контактный датчик изображения (CIS, от англ. Contact Image Sensor) на керамической основе, предназначенный для применения в сканирующих головках. Контактный датчик изображения CIS — принципиально новый принцип сканирования, использующий фотоэлементную технологию. Светочувствительные матрицы, выполненные по этой технологии, воспринимают отраженный оригиналом свет непосредственно через стекло сканера без использования систем фокусировки (рис. 1). Применение этой технологии позволило уменьшить размеры и вес планшетных сканеров более чем в два раза.

Типы печатающих головок цветных струйных принтеров.

Статья добавлена: 20.12.2017 Категория: Статьи

Типы печатающих головок цветных струйных принтеров. Активное развитие технологии струйной печати началось еще в конце 70-х годов, однако из-за технологических проблем на протяжении многих лет принтеры, использующие этот принцип печати, не могли дать отпечаток удовлетворительного качества. Никому не удавалось создать надежную и недорогую головку, которая могла бы равномерно и управляемо выстреливать порции чернил на бумагу. Различные производители пытались развивать струйную технологию, но первой успеха в этом секторе рынка добилась фирма Canon, получившая патент на свое устройство пузырьковой (bubble-jet) печати. Почти одновременно с ней фирме Hewlett-Packard удалось добиться значительных успехов в этой области. Позже эти Две фирмы договорились о взаимном обмене патентами благодаря чему сегодня именно им принадлежит до вольно большая (до 70% в Европе) доля рынка. Основное преимущество струйной печати — ее высокое качество при невысокой стоимости как самого принтера, так и получаемых на нем отпечатков Но струйные принтеры имели и целый ряд недостатков (которые, впрочем, постепенно устранялись и практически теперь не препятствуют широкому распространению принтеров этого типа). Один из основных недостатков струйной технологии печати - изменение качества печати в зависимости от типа используемой бумаги. Пока ни одному производителю не удалось создать такие чернила, который одинаково хорошо покрывали бы как глянцевую бумагу (или бумагу со специальным покрытием), так и обычную бумагу, используемую в делопроизводстве. В то же время стоимость бумаги со специальным покрытием все еще остается довольно высокой. К другим недостаткам струйных принтеров можно отнести неравномерность размеров сопел. Из-за этого при печати участков, имеющих низкую плотность закрашивания, возможно появление видимых обычным глазом светлых полос. Кроме того, на обычной бумаге жидкие чернила довольно сильно растекаются, что еще может быть приемлемо для обычного текста, но совершенно недопустимо при печати цветных изображений. Оптимально использовали струйный принтер, если объем печати составляет 1000-5000 страниц в год. При меньших объемах печати головки будут использоваться редко и будут засыхать и потребуется их замена. Для одних марок замена головки стоит приемлемо, а для других составит половину цены принтера. Большинство производителей струйных принтеров требует, чтобы картридж после вскрытия был израсходован в течении полугода. Наиболее распространены струйники четырех марок: Epson Stylus, Canon Bubble Jet, Hewlett Packard Desk Jet, Lexmark Color Jet. Принтеры отличаются как технологией печати так и системой команд. По принципу действия все струйные принтеры можно разделить на три большие группы: - термические принтеры с твердыми чернилами (принтеры со сменой фазы красителя); - термические принтеры с жидкими чернилами; - пьезоэлектрические принтеры с жидкими чернилами.

Z-буфер. Разрядность. Качество 3D изображения.

Статья добавлена: 20.12.2017 Категория: Статьи

Z-буфер. Разрядность. Качество 3D изображения. В современных видеоадаптерах графический процессор может выполнять функции ускорения трехмерной графики, в него встраиваются специальные электронные схемы, которые выполняют растеризацию гораздо быстрее, чем программное обеспечение. Большинство современных наборов микросхем 3D-акселераторов обеспечивают выполнение следующих функций растеризации: - растровое преобразование - определение того, какие пиксели экрана покрываются каждым из примитивов; - обработка полутонов - цветовое наполнение пикселей с плавными цветовыми переходами между объектами; - образование текстуры - наложение на примитивы двухмерных изображений и поверхностей; - определение видимости поверхностей - определение пикселей, покрываемых ближайшими к зрителю объектами. В трехмерном мире один объект может находиться впереди другого. Обычно световые лучи не проникают через непрозрачные объекты, поэтому мы видим все, что находится впереди, и не видим того, что позади. Когда два объекта перекрываются, нужно выяснить, какой из них находится впереди, чтобы знать, какие пиксели объекта нужно показать на дисплее. Область, в которой пересекаются две фигуры, можно описать, указав для каждого пиксела фигур величину расстояния от него до условного заднего плана. Если дополнить обычную видеопамять картой этих расстояний для каждого пикселя, то будет всегда известно, нужно ли закрашивать конкретный пиксель: если значение расстояния (или значение Z) у пикселя меньше, значит, он позади и его не нужно закрашивать.

ПРИЧИНЫ ОТКАЗОВ HDD.

Статья добавлена: 20.12.2017 Категория: Статьи

ПРИЧИНЫ ОТКАЗОВ HDD. Жесткий диск очень чувствительное к тряскам и ударам устройство и поэтому требует к себе очень внимательного отношения. Любой отказ или неисправность в накопителе может обернуться частичной или полной потерей очень важной и порой бесценной информации. Значительная доля неисправностей в накопителях является следствием непредусмотренных спецификациями механических воздействий на них. Отказы, возникающие при эксплуатации носителей информации на жестких дисках, могут быть вызваны очень многими причинами, в том числе и производственными дефектами. Внешние механические воздействия, жесткие удары, сотрясения, толчки, являются неявными причинами отказов жестких дисков в 50% случаев. Накопитель в 95% случаев получает ударные механические повреждения именно в те, моменты, когда он находится вне корпуса компьютера. Одной из частых причин отказов является падение жесткого диска. Падение, даже с очень небольшой высоты, может вызвать внутренние повреждения в накопителе, причем внешне корпус винчестера будет выглядеть безупречно, и на нем не будет следов механического воздействия. Подобные неисправности опасны тем, что они проявят себя позже, постепенно ухудшая параметры накопителя, они несут угрозу хранящимся на накопителе данным. Поэтому только спустя некоторое время пользователи видят на своем накопителе результаты удара о котором даже и не подозревали. Больше всего жесткие диски уязвимы перед механическими воздействиями в тот момент, когда они извлечены из оригинальной упаковки изготовителя, которая специально разработана для защиты накопителя после того, как он покинул заводские пределы. Жесткий диск, установленный в корпус компьютера, в какой-то мере защищен от внешних воздействий, т.к. в большинстве случаев корпус PC поглощает энергию ударного воздействия, и степень воздействия на накопитель может быть значительно снижена. Чаще всего жесткие диски испытывают ударные воздействия в моменты транспортировок от поставщика к потребителю и в процессе его установки в корпус PC недостаточно квалифицированным или плохо осведомленным персоналом. В России ситуация часто усугубляется тем, что партии винчестеров перевозят неподготовленным для этого транспортом, не предусматривая никаких дополнительных мер защиты на случай столкновения автомобиля или просто резкого торможения. Обычно фирмы-продавцы комплектующих, при продаже винчестеров передают их покупателю упакованными в одну единственную электростатическую оболочку. И нет гарантии, что сам продавец, не стукнул нечаянно этот диск, а это очень вероятно (достаточно посмотреть, как с винчестерами обращаются). Сильное ударное воздействие жесткий диск может испытать, если его случайно заденут монтажным инструментом, например отверткой, или стукнут два винчестера между собой, или накопитель получит удар в результате усиленного проталкивания винчестера на его посадочное место в корпусе компьютера. Наиболее пагубными являются удары с большой энергетической силой и короткой длительностью воздействия, (обычно это составляет сотни G за менее чем одну миллисекунду). Ударные воздействия выходящие за пределы «ударостойкости» стандартных накопителей могут вызвать внутри накопителей следующие нежелательные последствия: - шлепок головок о поверхность диска; - проскальзывание и смещение дисков в пакете; - появление люфта в подшипниках.

Стр. 3 из 124      1<< 1 2 3 4 5 6>> 124

Лицензия