Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 77 из 213      1<< 74 75 76 77 78 79 80>> 213

Смартфон, телефон, планшет.

Статья добавлена: 15.06.2018 Категория: Статьи

Смартфон, телефон, планшет. Смартфон – это мобильный телефон, оснащенный мощной операционной системой, которая в свою очередь позволяет работать со множеством приложений одновременно. Другими словами, смартфон это аналог компьютера. Он может выполнять почти все те же действия. Смартфон это телефон, имеющий начинку и функционал почти как у компьютера. Английское слово smart означает «умный», так что любому смартфону под силу решать множество сугубо «компьютерных» задач: установка программ, подключение к интернету, многозадачность, офисные приложения, игры и так далее. Сегодня смартфоны с сенсорными экранами окончательно вытеснили с рынка «обычные» кнопочные телефоны. Среди современных смартфонов лидируют iPhone и флагманы от Samsung. Чем смартфон отличается от телефона? Во-первых, прошивкой. Каждый смартфон должен иметь гибкую и мощную операционную систему, такую как Android или iOS, позволяющую устанавливать приложения сторонних разработчиков. Во-вторых, железом. На современных смартфонах установлены мощнейшие процессоры и видеокарты, объёмы оперативной памяти исчисляются гигабайтами, а экраны поражают своей яркостью и отзывчивостью. Но все эти плюсы имеют один существенный недостаток: они слишком быстро разряжают батарею. Современные смартфоны по размеру экрана и заложенным мощностям приближаются, а порой и перегоняют планшеты. Если разбирать отличия смартфонов от планшетов в глобальном пользовательском смысле, то по функционалу между ними можно проследить следующую разницу:

Основные особенности UEFI (Unified Extensible Firmware Interface).

Статья добавлена: 14.06.2018 Категория: Статьи

Основные особенности UEFI (Unified Extensible Firmware Interface). UEFI (Unified Extensible Firmware Interface) — замена устаревшему BIOS. Эта спецификация была придумана Intel для Itanium, тогда она еще называлась EFI (Extensible Firmware Interface), а потом была использована и на x86, x64 и ARM. Она разительно отличается от BIOS как самой процедурой загрузки, так и способами взаимодействия с ОС. В настоящее время разработкой UEFI занимается Unified EFI Forum. Основные отличия UEFI от BIOS:

Замена блока питания компьютера.

Статья добавлена: 13.06.2018 Категория: Статьи

Замена блока питания компьютера. Требования, предъявляемые к высококачественным устройствам, очень жесткие и все блоки питания им должны соответствовать. Для оценки качества блока питания используются различные критерии. Многие потребители при покупке компьютера пренебрегают значением источника питания, и поэтому некоторые сборщики персональных компьютеров сокращают расходы на него. Ведь не секрет, что гораздо чаще цена компьютера увеличивается за счет дополнительной памяти или жесткого диска большей емкости, а не за счет более совершенного источника питания. При замене блока питания компьютера (или покупке) необходимо обращать внимание на ряд важных для надежной работы системы параметров источника питания:

Проблемы безопасности систем хранения данных.

Статья добавлена: 21.06.2018 Категория: Статьи

Проблемы безопасности систем хранения данных. Вопросы безопасности инфраструктур хранения данных в вычислительных системах уже достаточно давно ставятся на одно из первых мест на всех этапах работы ИТ-служб предприятий и организаций. Важной проблемой является и обеспечение безопасности в системах хранения данных. Возможность взлома инфраструктуры хранения данных делает критически важную информацию крайне уязвимой. Следует учесть, что развитие систем хранения в большой степени заключается в переводе основной части информации в цифровой вид и переносе ее в централизованные хранилища, но при этом и риск несанкционированного доступа к хранимым данным значительно повышается. Устройства хранения данных являются новым слабым звеном системы сетевой безопасности. Высокая степень консолидации оборачивается опасностью несанкционированного доступа по открытым каналам, так как все узлы находятся в единой сети. Взлом одного или нескольких узлов в корпоративной сети хранения данных может привести к катастрофическим последствиям для бизнеса. Если вы каждые пять месяцев сталкиваетесь с пропажей значительных объемов данных, то можете быть уверены: у вас периодически случаются и более мелкие кражи информации, которые остаются необнаруженными. Сетевые специалисты стараются взять реванш, но, признавая важность защиты хранящихся данных (в рамках более общего процесса обеспечения информационной безопасности предприятия), они не могут прийти к согласию насчет того, как это следует делать. Ясно одно: ущерб от потери данных и повреждения систем их хранения (помимо нанесения урона имиджу компании) может быть очень велик, поэтому для большинства фирм крайне важно иметь план мероприятий, которые помогли бы избежать подобных происшествий. Пропажа конфиденциальной информации чревата подачей исков против компании и ее закрытием. К счастью, большинство специалистов понимают это. В ходе опроса специалистов заинтересованных организаций около 70% из числа опрошенных ответили, что руководство их организаций признает необходимость использования средств защиты информационных хранилищ. Но всего менее 10% опрошенных сказали, что вполне удовлетворены имеющимися системами и процессами обеспечения информационной безопасности. Опрос к тому же показал, что сохраняются проблемы в отношениях между разными группами ИТ-специалистов предприятия - главным препятствием для эффективной защиты хранящихся данных респонденты назвали отсутствие должного взаимодействия и взаимопонимания между специалистами по безопасности и персоналом, обслуживающим сеть.

Сенсорные экраны LCD мониторов.

Статья добавлена: 13.06.2018 Категория: Статьи

Сенсорные экраны LCD мониторов. Сенсорный экран (от англ. touch screen) - это координатное устройство, позволяющее путем прикосновения (пальцем, стилусом и т.п.) к области экрана монитора производить выбор необходимого элемента данных, меню или осуществлять ввод данных в различных компьютерных системах. Сенсорные экраны наиболее пригодны для организации гибкого интерфейса, интуитивно понятного даже далеким от техники пользователям. С распространением карманных, планшетных компьютеров, устройств для чтения электронных книг и различных терминалов сенсорные экраны стали такими же привычными, как кнопка и колесо. За прошедший период развития сенсорных экранов было разработано несколько типов этих устройств ввода, основанных на различных физических принципах, которые используются для определения места касания. В настоящее время наибольшее распространение получили два типа дисплеев — резистивные и емкостные. Помимо этого различают экраны, способные регистрировать одновременно несколько нажатий (Multitouch) или только одно. Сенсорные экраны используют всего четыре основных базовых принципа построения: резистивный, емкостный, акустический и инфракрасный (разные источники выделяют шесть, а иногда и семь технологий, по которым производятся сенсорные экраны).

Пример построения схемы управления блоком фиксации (печкой) принтера.

Статья добавлена: 13.06.2018 Категория: Статьи

Пример построения схемы управления блоком фиксации (печкой) принтера. Блок фиксации (печка) подключается (см. рис. 1) к разъему J102 (1-2 конт.). На нагревательный элемент печки подается переменное напряжение сети. Подача или отключение этого напряжения осуществляется с помощью симистора, выполняющего функцию мощного ключа в цепи переменного тока. Для обеспечения гальванической развязки первичной и вторичной цепей управление симистором осуществляется через оптопару SSR101, представляющую собой светодиод и фотосимистор. Сигнал для переключения симистора формируется микроконтроллером и носит название FSRD. В этой модели принтера симистор работает в режиме ON/OFF (пропуск периодов). Защита симистора от высокого падения напряжения на нем обеспечивается еще одним прибором – варистором. Схема защиты (FU701) от перегрева печки обеспечивает безусловное отключение нагревательного элемента печки от питающей сети в случае возникновения аварийного режима работы – чрезмерного перегрева, например, при «пробое» симистора (т.е. при его «коротком» замыкании). Размыкание цепи переменного тока осуществляется за счет отключения реле RL101. Реле управляется схемой на составном транзисторе. Перегрев определяется методом сравнения сигнала от датчика температуры печки с фиксированным опорным напряжением. Сравнение этих сигналов осуществляет компаратор на микросхеме IC302 (типа HA17324). На «прямой» вход этого компаратора подается опорное напряжение, а на «инверсный» вход подается сигнал FSRTH от датчика температуры TH701. Напряжение сигнала датчика температуры уменьшается при нагреве печки. Кроме сигнала от датчика температуры реле может управляться еще и микроконтроллером с помощью сигнала /RLYD. Этим сигналом микроконтроллер включает реле, что позволит обеспечить нагрев печки. И этим же сигналом микроконтроллер размыкает реле в периоды ожидания (когда принтер находится в состоянии «Готов»), а также при возникновении фатальных ошибок принтера.

Сканеры в МФУ.

Статья добавлена: 13.06.2018 Категория: Статьи

Сканеры в МФУ. Сканер представляет собой достаточно сложное электромеханическое устройство. В составе оборудования сканера имеются оптические узлы, механические компоненты и электронные схемы управления, традиционно построенные на базе микропроцессорной техники. Сканер является составной частью цифровых копировальных аппаратов и многофункциональных устройств (МФУ). МФУ давно и прочно заняли значительный сегмент рынка периферийных устройств. Покупая МФУ, пользователь даже в минимальной комплектации получает принтер, цветной сканер, и цифровой копировальный аппарат. Если же приобрести более "серьезную" модель, то ко всему этому добавится факсимильный аппарат с автоматической подачей бумаги и лотками большой емкости. Несмотря на кажущуюся сложность аппаратов, пользоваться ими очень просто. Именно поэтому многие известные производители стали делать значительный акцент на выпуск и продвижение МФУ. Характеристики сканера. Характеристики сканера обычно определяют тремя основными показателями: - разрешением, - глубиной цвета, - динамическим диапазоном. Истинное оптическое разрешение, часто выражается в dpi (dots per inch - точек на дюйм), и определяет число элементарных участков поверхности сканируемого оригинала, информация о которых воспринимается одной линейкой (при цветном трехпроходном сканировании), или тремя светочувствительными линейками ПЗС-матрицы (по одной линейке на красный, зеленый и синий цвет). Разрешение сканера правильнее отражается не в dpi, так как эта единица измерения более характерна для принтеров, которые формируют цветовые оттенки и элементы изображения из мельчайших растровых точек, а в ppi (pixels per inch - пикселов на дюйм) - эта единица измерения, оперирует прямоугольными элементами (пикселами) конкретной величины. Величина оптического разрешения сканера и размер пиксела напрямую определяются числом светочувствительных элементов ПЗС-матрицы, размещенной параллельно одной из сторон ложа сканера. Это разрешение имеет естественные границы, которые можно расширить лишь сокращая размер сканируемой области, приходящейся на длину светочувствительной линейки. Делается это с помощью оптических систем с переключаемыми линзами, которые обеспечивают экспонирование встроенных ПЗС-структур световым потоком, сканирующим либо всю ширину ложа, либо только его часть (как правило, центральную). Существует оригинальный способ увеличения разрешения цветных (монохромных) сканеров в котором на каждый из трех цветов установлена не одна, а целых две ПЗС-линейки, сдвинутые друг относительно друга на половину шага.

Инфракрасный интерфейс.

Статья добавлена: 20.02.2019 Категория: Статьи

Инфракрасный интерфейс. Устройство инфракрасного интерфейса (рис. 1) подразделяется на два основных блока: преобразователь (модули приемника-детектора и диода с управляющей электроникой) и кодер-декодер. Блоки обмениваются данными по электрическому интерфейсу, в котором они в том же виде транслируются через оптическое соединение, за исключением того, что здесь информация пакуется в кадры простого формата – данные передаются 10-битными символами, с 8 битами данных, одним старт-битом в начале и одним стоп-битом в конце кадра. Связь в IrDA полудуплексная, так как передаваемый ИК-луч неизбежно засвечивает соседний PIN-диодный усилитель приемника. Пространственный промежуток между устройствами позволяет принять ИК-энергию только от одного источника в данный момент. Для ИК-излучения cуществует два источника интерференции (помех), основным из которых является солнечный свет, но, к счастью, в нем преобладает постоянная составляющая. Правильно спроектированные приемники должны компенсировать большие постоянные токи через PIN-диод. Другой источник помех – флуорисцентные лампы, часто применяемые для освещения. Хорошо спроектированные приемники имеют полосовой фильтр для снижения влияния таких источников помех. Вероятность ошибок связи будет зависеть от правильного выбора мощности передатчика и чувствительности приемника. В IrDA выбраны значения, гарантирующие, что описанные выше помехи не будут влиять на качество связи. Инфракрасные устройства должны быть сконфигурированы как ведущее и ведомое.

Технология виртуализации - концепция виртуализации платформ.

Статья добавлена: 09.06.2018 Категория: Статьи

Технология виртуализации - концепция виртуализации платформ. Процессоры и платформы Intel и в перспективе будут выделяться не только самой высокой производительностью, но и богатыми вычислительными и коммуникационными возможностями, средствами управления питанием, повышенной надежностью, безопасностью и управляемостью, а также полной интеграцией со всеми остальными компонентами платформы. Дальнейшее наращивание количества транзисторов на кристалле, конечно, жизненно важно, но для осуществления еще одного революционного скачка, прежде всего, необходим всесторонний пересмотр технологических процессов, архитектуры и программного обеспечения (ПО). Глобализация и высокопроизводительные вычисления, найдут прямое отражение в вычислительных платформах будущего. Эксперты Intel полагают, что в ближайшем будущем архитектура процессоров и платформ должна двигаться в направлении виртуализованной, реконфигурируемой микропроцессорной архитектуры на уровне кристалла с большим количеством ядер, с богатым набором встроенных вычислительных возможностей, с подсистемой внутрикристальной памяти очень большого объема и интеллектуальным микроядром. Сейчас Intel лидирует во многих технологиях повышении уровня параллелизма для увеличения производительности, которые являются одним из важнейших направлений совершенствования архитектуры микропроцессоров (суперскалярная архитектура, многопроцессорная обработка, переупорядоченное исполнение инструкций, технология Hyper-Threading (HT), многоядерные кристаллы, оптические интерфейсы и др.). Корпорация уже давно перешла на серийный выпуск платформ на базе многоядерных процессоров, в процессе развития естественно число ядер будет становиться все больше. Предложенная специалистами концепция виртуализации платформ способна обеспечить эффективное развитие для мощных, автономных и надежных компьютерных систем. Для работы микропроцессоров будущего потребуется несколько уровней виртуализации. Например, виртуализация необходима для того, чтобы скрыть сложную структуру аппаратного обеспечения от соответствующего ПО. Сама операционная система (ОС), ее ядро и ПО не должны "задумываться" о сложном устройстве платформы, о наличии множества ядер, о специализированном аппаратном обеспечении, о множестве модулей кэш-памяти, средствах реконфигурирования и т. п. Они должны "видеть" процессор как набор унифицированных виртуальных машин с глобальными интерфейсами. Такой необходимый уровень абстракции предоставляет именно виртуализация. Виртуализацию платформ можно определить как создание логически разделенных вычислительных систем, которые работают на реальных платформах. Если применить виртуализацию к дисковой памяти и серверам, концепция виртуализации платформ идет значительно глубже и включает все уровни системы - от прикладных программ и ОС до компонентов платформы, процессоров и средств связи.

Основные преимущества UEFI(ликбез).

Статья добавлена: 09.06.2018 Категория: Статьи

Основные преимущества UEFI(ликбез). UEFI (единый интерфейс EFI) - это стандартный интерфейс встроенного программного обеспечения (ПО) для компьютеров, заменяющий BIOS. В создании этого стандарта участвовали более 140 технологических компаний, составляющих часть консорциума UEFI, включая Майкрософт. Стандарт был создан для улучшения взаимодействия программного обеспечения и устранения ограничений BIOS. Все 64-разрядные версии компьютеров под управлением Windows, отвечающие требованиям программы сертификации для Windows, используют UEFI вместо BIOS. Чтобы узнать, поддерживает ли ваш компьютер UEFI, обратитесь к документации, поставляемой с компьютером. Рассмотрим основные преимущества UEFI :

Технологии повышения качества видеоизображений.

Статья добавлена: 09.06.2018 Категория: Статьи

Технологии повышения качества видеоизображений. Технологии SLI (Scan Line Interleave – чередование строчек). В свое время NVIDIA представила технологию SLI (Scan Line Interleave – чередование строчек), благодаря которой появилась возможность объединить две подобные видеокарты с шиной PCI для формирования изображения методом чередования строк, что увеличивало быстродействие графической подсистемы и разрешение экрана. Действительно, всё новое – это хорошо (в данном случае – очень хорошо) забытое старое: спустя почти 15 лет NVIDIA возродила SLI. Графические адаптеры в SLI-конфигурации соединялись платой-перемычкой, надеваемой на специальные 26-контактные разъемы в верхней части платы. Именно название этой платы Scalable Link Interface (интерфейс масштабируемых соединений) и позволило компании NVIDIA сохранить хорошо знакомую пользователям аббревиатуру SLI. Технологии CrossFire (перекрестный огонь). Инженеры ATI разработали технологию CrossFire в которой использовали подход, радикально отличающийся от подхода компании NVIDIA в SLI. У ATI в Cross¬Fire обе платы равноправны, одна из них выполняет роль ведущей (master card), а другая - ведомой (slave card). Ведомой может быть только плата, оснащенная дополнительной микросхемой, называемой Compositing Engine, — эта микросхема комбинирует фрагменты изображения, обработанные каждой из плат. Для соединения плат используется не внутренняя перемычка, а специальный кабель, соединяющий вы¬ход ведомой карты со специальным разъемом ведущей. Технология CrossFire предусматривает несколько режимов распределения нагрузки. Особенностью режимов работы CrossFire является то, что для CrossFire доступно всего 3 режима рендеринга: Scissor, SuperTiling, AFR. В отличие от SLI-систем свободный выбор режимов недоступен и нужный режим выбирается драйвером автоматически. Так же, как и в NVIDIA SLI «перекрестный огонь» может вестись и в режиме по¬кадрового рендеринга, и в режиме динамического распределения нагрузки при разделении экрана на две неравные сплошные части. Предусмотрен и фирменный режим Su-pertiling (мозаика), в котором изображение разбивается на фрагменты по 32x32 пиксела и эти фрагменты делятся поровну между платами, как делится на черные и белые клетки шахматная доска. Этот режим обеспечивает равномерность распределения нагрузки между платами.

Изобретение Карлсона (Честер Ф. Карлсон (1906-1968)).

Статья добавлена: 09.06.2018 Категория: Статьи

Изобретение Карлсона (Честер Ф. Карлсон (1906-1968)). Cухой электростатический фотокопировальный процесс был изобретен и запатентован (Честер Ф. Карлсон) в 1935 году, когда все остальные способы тиражирования копий были настолько несовершенны, что делопроизводство практически полностью велось методом перепечатки документов через копирку. Такое положение, когда деятельность, связанная с производством многочисленных копий, превращалась в тяжелый монотонный и грязный процесс, и вынудило первооткрывателя сухого электростатического переноса Честера Ф. Карлсона взяться за создание инженерной системы, которая могла бы производить копии быстро, дешево, качественно, просто. Честер Карлсон получил в 1930 году степень бакалавра физики в Калифорнийском технологическом институте. Проработав незначительное время в Bell Telephone Company, он устроился в патентный отдел нью-йоркской электротехнической компании P.R.Mallory Company, где и столкнулся впервые с проблемой изготовления копий. Карлсон понял, насколько велика потребность в простом и дешевом средстве производства высококачественных копий, и решил посвятить решению этой проблемы всё свое свободное время. Начиная с 1934 года он ознакомился практически со всеми материалами того времени, так или иначе относившимися к фотографическому и печатному процессам, и его внимание привлекли приводившиеся в одной из публикаций сведения о том, что электропроводимость определенных материалов меняется под воздействием света. Этот принцип он и решил положить в основу своей разработки. Лишь после долгих экспериментов, занявших четыре года, Карлсон наконец добился своего и сделал первую в истории сухую фотокопию. Через год он получил первый из многочисленных патентов на свое изобретение, но до создания копировального аппарата массового применения было еще далеко. Еще четыре года Карлсон потратил на тщетные попытки заинтересовать своим изобретением производителей оборудования. То, что было очевидным для рядового клерка, в глазах руководителей компаний выглядело сомнительным. Более двадцати фирм, в том числе IBM, Remington и General Electric, ответили на его предложение отказом. Наконец ему удалось уговорить некоммерческую организацию Bettell Memorial Institute, занимавшуюся научными изысканиями, субсидировать его дальнейшие работы над усовершенствованием нового процесса.

Стр. 77 из 213      1<< 74 75 76 77 78 79 80>> 213

Лицензия