Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 4 из 131      1<< 1 2 3 4 5 6 7>> 131

Что такое lpi, dpi, ppi?

Статья добавлена: 05.03.2018 Категория: Статьи

Что такое lpi, dpi, ppi? Изображения в компьютере (в форматах tif, jpg, bpm и прочих, для работы с которыми предназначена, например, программа Adobe PhotoShop и другие растровые редакторы) представляют собой мозаику мельчайших элементов квадратной формы, называемых пикселями. Один пиксел может иметь только один определенный цвет, выбираемый из пространства доступных для данного типа изображения цветов. Изображение получается комбинацией пикселей, принцип формирования изображения точно такой же, как и принцип формирования мозаики из кусочков цветного стекла. Каждый кусочек цветного стекла в мозаике представляет собой пиксел. Количество пикселей изображения на единицу размера (конкретно на дюйм) называется ppi = pixel per inch = пикселей на дюйм. Для полутоновых изображений никаких других величин измерения быть не может. Только ppi. Ни единица lpi ни dpi для полутоновых изображений в компьютере не применимы. Например, 300 ppi означает что на 1 дюйм изображения приходится 300 пикселей. На один квадратный дюйм площади изображения при этом приходится 300х300=90 000 пикселей. Таким образом изображение размером 1х1 дюйм, с разрешаюшей способностью (в простонародье - с разрешением) 300 ppi представляет собой квадратную мозаику, состояющуюю из 300 линий по 300 одноцветных квадратиков в каждой линии. Цвет каждого квадратика может быть любой необходимый, цвет в пределах квадратика может быть только один. Если конструкция и принципы работы монитора позволяют воспроизводить цвета в виде цветных равномерно заполненных квадратиков с регулируемой яркостью каждого квадратика, то конструкция других выводных устройств, в частности лазерных и струйных принтеров, фотоавтоматов и офсетных печатных машин такого не позволяет. Ни лазерный ни цветной принтер ни печатная машина не в состоянии воспроизвести точку с регулируемой яркостью точки. Ни лазерный ни струйный принтеры ни печатная машина не могут регулировать подачу краски (чернил, тонера, печатной краски) от точки к точке. Все эти устройства могут либо нанести слой краски на какую либо область бумаги, либо оставить эту область чистой. Нанести в одном месте листа слой краски толщиной в 10 нм, а в другом месте листа слой краски слой 20 нм, такие устройства не способны.

Импульсные блоки питания. Основные принципы работы.

Статья добавлена: 05.03.2018 Категория: Статьи

Импульсные блоки питания. Основные принципы работы. Импульсные блоки питания (ИБП) на сегодняшний день получили самое широкое распространение и используются во всех современных радиоэлектронных устройствах. В основе работы любого ИБП заложен один и тот же основной принцип, который заключается в преобразовании сетевого переменного напряжения (220В, 50 Гц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется. Преобразование переменного напряжения в импульсное высокочастотное напряжение прямоугольной формы осуществляется с помощью импульсного трансформатора и мощного транзистора, работающего в режиме ключа в цепи первичной обмотки импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта построения преобразователей: - по схеме импульсного автогенератора (например, такой использовался в ИБП телевизоров); - по схеме с внешним управлением (используется в большинстве современных радиоэлектронных устройств). Обычно частота преобразователя выбирается от 18 до 50 кГц, поэтому импульсный трансформатор и весь блока питания достаточно компактны, что является важным параметром для современной радиоэлектронной аппаратуры. На рис. 1. показан пример упрощенной схемы импульсного преобразователя с внешним управлением.

Принцип работы TFT LCD-мониторов (ликбез).

Статья добавлена: 05.03.2018 Категория: Статьи

Принцип работы TFT LCD-мониторов (ликбез). Работа жидко-кристаллических элементов LCD-мониторов основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами. Общая блок-схема LCD-монитора показана на рис. 1. Панель любого LCD монитора представляет собой массив маленьких сегментов называемых пикселями, их количество соответствует произведению разрешения монитора по горизонтали и вертикали, и каждый пиксел в цветной панели состоит из трех субпикелов — красного, зеленого и синего. Управляя всеми пикселами панели, можно формировать изображение. В тонкопленочных полупроводниковых жидкокристаллических мониторах TFT LCD (Thin Film Transistor Liquid Crystal Display) жидкокристаллическое вещество расположено между двумя слоями стекла (рис. 2).

Монтаж термочувствительных компонентов. Система импульсной пайки.

Статья добавлена: 05.03.2018 Категория: Статьи

Монтаж термочувствительных компонентов. Система импульсной пайки. Существует ряд паяльных работ, как правило, связанных с монтажом термочувствительных компонентов, при которых необходимо, чтобы паяльник до выполнения операции находился в холодном состоянии и только после прикосновения к паяемому контакту нагревался бы с определенной скоростью. Для этого служат импульсные паяльные системы. Возможность управлять скоростью нагрева кон¬такта от комнатной температуры до температуры пайки - это основное отличие импульсных паяльных систем от традиционных паяльных станций с постоянной температурой паяльника. Это свойство определяет специфическую область применения импульсных инструментов, позволяющих выполнять операции, недоступные для традиционных паяльников. Например, марка «ТермоПро» хорошо известна в сфере производства и сервиса электроники, прежде всего, благодаря уникальным термостолам для подогрева печатных плат и высоко¬точным пневмодозаторам ПП-34ц. Не менее широкое распространение получили аналоговые импульсные паяльные системы ФР-100, по характеристикам значительно превосходящие зарубежные приборы. Проанализировав многолетний опыт применения аналоговых импульсных систем и изучив много¬численные пожелания пользователей, компания «Техно-Альянс Электронике» в сотрудничестве с фирмой «Аргус X» разработала цифровую модель - ФРЦ-150 (рис. 1). Импульсная система ФРЦ-150 представляет со¬бой низковольтный источник переменного напряжения с цифровым управлением, поддерживающий работу одного из четырех термоинструментов: импульсного паяльника, одно- и двухконтурного термопинцетов, а также импульсного съемника изоляции. Питание на любой из этих инструментов подается только на время выполнения операции. До и после этого инструмент находится в относительно холодном состоянии. Время подачи питания, то есть длительность импульса, и скорость нагрева инструмента задается оператором, а затем отслеживается цифровой системой. Область применения таких систем в промышленности может быть достаточно широка. Любая система нагрева, где не нужно строго поддерживать заданную температуру, а достаточно регулировки мощности, может быть построена с применением цифрового регулятора ФРЦ-150. А в тех случаях, когда требуется автоматическое ступенчатое управление мощностью, этот регулятор будет особенно полезен. Таким образом, возможна адаптация регулятора ФРЦ-150 под конкретные технологические задачи.

Технологии работы с лазером: Метод RET, TurboRes.

Статья добавлена: 05.03.2018 Категория: Статьи

Технологии работы с лазером: Метод RET, TurboRes. В новых технологиях используются более деликатные методы работы с лазером, что позволяет, работая на том же принтере печати повысить качество печати как с увеличением разрешающей способности, так и без него. Метод RET, применяемый фирмой Helett Packard, основан на изменении размера точек, которые принтер наносит на бумагу без фактического изменения разрешающей способности. При этом с помощью модуляции лазерного луча в процессе построения изображения удается дозировано снимать заряд с барабана, в результате изменяется размер участка, к которому прилипает тонер. Это позволяет, например, заострить углы засечек у букв и избежать скапливания тонера в местах пересечения линий. Наклонные линии также становятся более гладкими. По оценкам специалистов фирмы, эффект от использования RET аналогичен повышению разрешающей способности примерно в полтора раза. На рис. 1 показан один из вариантов формирования «скрытого изображения» с использованием технологий улучшающих качество изображения.

Копиры и МФУ. Часто встречающиеся проблемы и способы их решения.

Статья добавлена: 02.03.2018 Категория: Статьи

Копиры и МФУ. Часто встречающиеся проблемы и способы их решения. При обслуживании копиров или МФУ могут возникать различные проблемы, которые не позволяют обеспечить бесперебойную работу устройства, быстро и качественно выполнить замену расходных материалов и т. п. Ниже перечислены часто встречающиеся проблемы и способы их решения:

Характеристики TFT LCD дисплеев.

Статья добавлена: 02.03.2018 Категория: Статьи

Характеристики TFT LCD дисплеев. Качество монитора (экрана) очень важно для сохранения зрения пользователей персональных компьютеров. Интенсивная работа в течении многих часов за монитором является очень сильной нагрузкой для зрения. Четкость изображения в большой степени зависит от размера точек люминофора экрана. Среднее расстояние между точками называется зерном. У различных мониторов этот параметр имеет значение от 0,21 до 0,31. Важными параметрами являются частота кадровой (вертикальной) развертки и строчной (горизонтальной) развертки и полоса пропускания видеосигнала. Чем выше частота кадров, тем устойчивее изображение и меньше утомление зрения (у качественных мониторов частота кадров 70-80 Гц). Частота строк в килогерцах определяется путем умножения количества строк, выводимых в одном кадре, на частоту кадровой развертки. Полоса частот пропускания видеосигнала (измеряемая в Мгц) определяется как произведение количества точек в строке и частоты строчной развертки. Ниже рассмотрены основные характеристики TFT LCD дисплеев:

Цоколёвки полевых транзисторов.

Статья добавлена: 02.03.2018 Категория: Статьи

Цоколёвки полевых транзисторов. У полевых транзисторов, выполненных по технологии МОП (металл-оксид-полупроводник) или МДП (металл-диэлектрик-полупроводник) или MOSFET (Metal-Oxide-SemiconductorField-EffectTransistor) расположение выводов (цоколевка) Затвор (Gate) – Сток (Drain) – Исток (Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S). Если такой маркировки нет, то желательно воспользоваться справочными данными (datasheet), которые можно найти в инете (например на сайте alldatasheet.com). Рассмотрим основные типы корпусов и цоколевку полевых транзисторов импортного производства:

Технические термины применяемые в документации по АКБ.

Статья добавлена: 02.03.2018 Категория: Статьи

Технические термины применяемые в документации по АКБ. Аккумулятор (элемент) (cell, secondary cell) - совокупность электродов и электролита, образующая основу устройства аккумуляторной батареи. Аккумуляторная батарея (secondary battery) - два или более аккумуляторов (элементов), соединенных между собой и используемых в качестве источника электрической энергии. Свинцово-кислотная аккумуляторная батарея (lead acid battery) - аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты. Заряд батареи (charge of a battery) - операция, в процессе которой батарея получает от внешней цепи электрическую энергию, которая преобразуется в химическую. Разряд батареи (discharge of a battery) - операция, в процессе которой батарея отдает ток во внешнюю цепь в результате превращения химической энергии в электрическую. Открытый аккумулятор (vented cell) - аккумулятор, имеющий крышку с отверстием, через которое могут удаляться газообразные продукты. Отверстие может быть снабжено системой вентиляции. Закрытый аккумулятор (valve-regulated sealed cell) - аккумулятор, который закрыт в обычных условиях, но имеет устройство, позволяющее выделяться газу, когда внутреннее давление превышает установленное значение. Обычно дополнительная заливка электролита в такой аккумулятор невозможна. Сухозаряженная батарея (dry charged battery) - аккумуляторная батарея, хранящаяся без электролита, пластины (электроды) которой находятся в сухом заряженном состоянии. Пластина Планте (Plante plate) - пластина очень большой эффективной поверхности, обычно изготавливаемая из свинца, активная масса которой формируется в тонких слоях свинца путем электрохимического окисления. Намазная (пастированная) пластина (pasted plate) - пластина, содержащая токопроводящую решетку, которая служит основой для активной массы. Трубчатая (панцирная) пластина (tubular plate) - положительная пластина, которая состоит из комплекта пористых трубок, заполненных активной массой. Вентиляционная пробка (vent plug (of a cell or battery)) - деталь, закрывающая заливочное отверстие, которое также используется для удаления газа. Предохранительный клапан (vent valve) - деталь вентиляционной пробки, которая позволяет выходить газу в случае избыточного внутреннего давления, но не допускает поступления воздуха в аккумулятор. Батарейный поддон (battery tray) - контейнер со сплошными стенками для размещения нескольких аккумуляторов или батарей. Емкость батареи (battery capacity) - количество электричества или электрический заряд, которое(ый) полностью заряженная батарея может отдать в заданных условиях. Единицей СИ для электрического заряда является кулон (1 Кл = 1 А•с), но на практике емкость обычно выражается в ампер-часах (А•ч). Конечное напряжение разряда (final voltage, cut-off voltage, end voltage) - заданное напряжение, при котором разряд батареи считается законченным. Постоянный подзаряд (непрерывный заряд малым током) (trickle charge) - непрерывный заряд длительным режимом, который компенсирует саморазряд и поддерживает батарею в состоянии почти полной заряженности.

Бэкдор. Программа-шпион (ликбез).

Статья добавлена: 02.03.2018 Категория: Статьи

Бэкдор. Программа-шпион (ликбез). Пользователь через Интернет может принять троянскую программу, используемую хакерами для сбора информации, её разрушения или модификации, нарушения работоспособности компьютера, или использования его ресурсов в своих целях. Действие самой троянской программы может и не быть в действительности вредоносным, но трояны заслужили свою дурную славу за их использование в инсталляции программ типа Backdoor.

Эффективная влагозащита обеспечивает высокую безотказность и долговечность электронных устройств в самых различных условиях эксплуатации.

Статья добавлена: 02.03.2018 Категория: Статьи

Эффективная влагозащита обеспечивает высокую безотказность и долговечность электронных устройств в самых различных условиях эксплуатации. Отказы в электронных узлах на печатных платах вызываются различными факторами. Давно общеизвестен факт, что отрицательное воздействие внешней среды непосредственно сказывается на показателях надежности печатных узлов и сборок выполненных по современным технологиям. При экстремальных условиях эксплуатации с целью увеличения срока службы и безотказности оборудования на печатные узлы принято наносить защитные покрытия. В зависимости от условий эксплуатации это могут быть акриловые или полиуретановые лаки, силиконовые материалы, эпоксидные смолы. Однако далеко не всегда перед нанесением влагозащитного покрытия должное внимание уделяется обеспечению чистоты поверхности печатного узла. Почему так важно обеспечить отсутствие загрязнений на поверхности печатного узла перед нанесением влагозащитного покрытия и как проявляется плохое качество отмывки в процессе эксплуатации? При нанесении влагозащитного покрытия необходимо обеспечить хорошую адгезию покрытия к печатному узлу, так как это позволит гарантировать высокую надежность и долговечность влагозащитного покрытия. Канифольные остатки флюса и активаторы в ряде случаев оказываются несовместимыми с применяемыми влагозащитными материалами и могут привести к значительному уменьшению адгезии. В результате происходит отшелушивание или отслаивание покрытия, ухудшение влагозащитных характеристик. Поэтому для обеспечения хорошей адгезии влагозащитного покрытия высокая чистота печатного узла является необходимым условием. Принимая решение о необходимости отмывки перед нанесением влагозащиты, также важно понимать, что современные покрытия являются препятствием для сконденсировавшейся влаги и молекул загрязнений, но, в то же время, они «запирают» загрязнения, имеющиеся на поверхности печатного узла. Это означает, что не отмытые остатки флюса, а также другие загрязнения после нанесения влагозащитного покрытия остаются на поверхности печатного узла и сохраняют свои свойства на протяжении всего периода хранения и использования изделия. При нормальных условиях эксплуатации данное явление не представляет серьезной опасности. Но при эксплуатации в условиях повышенной влажности, воздействия солевого тумана, перепадов температур, запертые внутри загрязнения становятся существенной угрозой надежности изделия. Разрушительные механизмы на поверхности не отмытого печатного узла под влагозащитным покрытием могут быть спровоцированы различными факторами воздействия окружающей среды. Но результатом таких процессов, как правило, являются следующие дефекты:

Диагностика, самодиагностика, коды ошибок, технологические режимы копиров.

Статья добавлена: 01.03.2018 Категория: Статьи

Диагностика, самодиагностика, коды ошибок, технологические режимы копиров. Копиры обычно оснащены встроенной системой самодиагностики, определяющей причину отказа. Эта система призвана облегчить работу сервисного инженера по диагностике неисправного устройства, и должна показать, какой из модулей аппарата отказал. Как и во всех подобных устройствах, такая информация может быть получена путем анализа показаний датчиков в определенные моменты времени. Микроконтроллер (или микропроцессор) в момент инициализации аппарата, непосредственно перед началом печати или уже во время печати опрашивает состояния датчиков в соответствии с управляющей программой. Если состояния датчиков не соответствуют тому, что записано в программе, то возникает состояние ошибки. Микропроцессор, определив какой из датчиков выдает неверную информацию, указывает причину или неисправный блок. Коды ошибок как правило выводятся на световом дисплее, находящемся на панели управления копира. При возникновении ошибки аппарат не в состоянии осуществлять процесс копирования, т.е. он блокируется. Однако обычно достаточно осуществить сброс аппарата, что вызовет и сброс ошибки, если она возникла случайно (для этого достаточно только выключить аппарат и снова включить его). Естественно, что если в аппарате имеется серьезная неисправность, то ошибка снова появится, что говорит о том, что необходимо провести ремонт аппарата и устранить причину возникновения ошибки. Коды ошибок могут сообщать о следующих типичных отказах копира:

Стр. 4 из 131      1<< 1 2 3 4 5 6 7>> 131

Лицензия